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Model Predictive Control Toolbox Product Description
Design and simulate model predictive controllers

Model Predictive Control Toolbox provides functions, an app, and Simulink® blocks for designing and
simulating controllers using linear and nonlinear model predictive control (MPC). The toolbox lets
you specify plant and disturbance models, horizons, constraints, and weights. By running closed-loop
simulations, you can evaluate controller performance.

You can adjust the behavior of the controller by varying its weights and constraints at run time. The
toolbox provides deployable optimization solvers and also enables you to use a custom solver. To
control a nonlinear plant, you can implement adaptive, gain-scheduled, and nonlinear MPC
controllers. For applications with fast sample rates, the toolbox lets you generate an explicit model
predictive controller from a regular controller or implement an approximate solution.

For rapid prototyping and embedded system implementation, including deployment of optimization
solvers, the toolbox supports C code and IEC 61131-3 Structured Text generation.

1 Introduction
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What is Model Predictive Control?
Model predictive control (MPC) is an optimal control technique in which the calculated control
actions minimize a cost function for a constrained dynamical system over a finite, receding, horizon.

At each time step, an MPC controller receives or estimates the current state of the plant. It then
calculates the sequence of control actions that minimizes the cost over the horizon by solving a
constrained optimization problem that relies on an internal plant model and depends on the current
system state. The controller then applies to the plant only the first computed control action,
disregarding the following ones. In the following time step the process repeats.

MPC Basic Control Loop

When the cost function is quadratic, the plant is linear and without constraints, and the horizon tends
to infinity, MPC is equivalent to linear-quadratic regulator (LQR) control, or linear-quadratic Gaussian
(LQG) control if a Kalman filter estimates the plant state from its inputs and outputs.

In practice, despite the finite horizon, MPC often inherits many useful characteristics of traditional
optimal control, such as the ability to naturally handle multi-input multi-output (MIMO) plants, the
capability of dealing with time delays (possibly of different durations in different channels), and built-
in robustness properties against modeling errors. Nominal stability can also be guaranteed by using
specific terminal constraints. Other additional important MPC features are its ability to explicitly
handle constraints and the possibility of making use of information on future reference and
disturbance signals, when available.

Solving a constrained optimal control online at each time step can require substantial computational
resources. However in some cases, such as for linear constrained plants, you can precompute and
store the control law across the entire state space rather than solve the optimization in real time.
This approach is known as explicit MPC.

MPC Design Workflow
In the simplest case (also known as traditional, or linear, MPC), in which both plant and constraints
are linear and the cost function is quadratic, the general workflow to develop an MPC controller
includes the following steps.

1 Specify plant — Define the internal plant model that the MPC controller uses to forecast plant
behavior across the prediction horizon. Typically, you obtain this plant model by linearizing a
nonlinear plant at a given operating point and specifying it as an LTI object, such as ss, tf, and
zpk. You can also identify a plant using System Identification Toolbox™ software. Note that one
limitation is that the plant cannot have a direct feedthrough between its control input and any
output. For more information on this step, see “Construct Linear Time Invariant Models” on page
2-14, “Specify Multi-Input Multi-Output Plants” on page 2-19, “Linearize Simulink Models” on
page 2-21, “Linearize Simulink Models Using MPC Designer” on page 2-30, and “Identify Plant
from Data” on page 2-48.

2 Define signal types — For MPC design purposes, plant signals are usually categorized into
different input and output types. You typically use setmpcsignals to specify, in the plant object
defined in the previous step, whether each plant output is measured or unmeasured, and whether
each plant input is a manipulated variable (that is, a control input) or a measured or unmeasured
disturbance. Alternatively, you can specify signal types in MPC Designer. For more information,
see “MPC Signal Types” on page 2-2.

 What is Model Predictive Control?
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3 Create MPC object — After specifying the signal types in the plant object, you create an mpc
object in the MATLAB® workspace (or in the MPC Designer), and specify, in the object,
controller parameters such as the sample time, prediction and control horizons, cost function
weights, constraints, and disturbance models. The following is an overview of the most important
parameters that you need to select.

a Sample time — A typical starting guess consists of setting the controller sample time so that
10 to 20 samples can cover the desired rise time of the system.

b Prediction horizon — The number of future samples over which the controller tries to
minimize the cost. It should be long enough to capture the transient response and cover the
significant dynamics of the system. A longer horizon increases both performance and
computational requirements. A typical prediction horizon is 10 to 20 samples.

c Control horizon — The number of free control moves that the controller uses to minimize the
cost over the prediction horizon. Similarly to the prediction horizon, a longer control horizon
increases both performance and computational requirements. A good rule of thumb for the
control horizon is to set it from 10% to 20% of the prediction horizon while having a
minimum of two to three steps. For more information on sample time and horizon, see
“Choose Sample Time and Horizons”.

d Nominal Values — If your plant is derived from the linearization of a nonlinear model around
an operating point, a good practice is to set the nominal values for input, state, state
derivative (if nonzero), and output. Doing so allows you to specify constraints on the actual
inputs and outputs (instead of doing so on the deviations from their nominal values), and
allows you to simulate the closed loop and visualize signals more easily when using Simulink
or the sim command.

e Scale factors — Good practice is to specify scale factors for each plant input and output,
especially when their range and magnitude is very different. Appropriate scale factors
improve the numerical condition of the underlying optimization problem and make weight
tuning easier. A good recommendation is to set a scale factor approximatively equal to the
span (the difference between the maximum and minimum value in engineering units) of the
related signal. For more information, see “Specify Scale Factors”.

f Constraints — Constraints typically reflect physical limits. You can specify constraints as
either hard (cannot be violated in the optimization) or soft (can be violated to a small extent).
A good recommendation is to set hard constraints, if necessary, on the inputs or their rate of
change, while setting output constraints, if necessary, as soft. Setting hard constraints on
both input and outputs can lead to infeasibility and is in general not recommended. For more
information, see “Specify Constraints”.

g Weights — You can prioritize the performance goals of your controller by adjusting the cost
function tuning weights. Typically, larger output weights provide aggressive reference
tracking performance, while larger weights on the manipulated variable rates promote
smoother control moves that improve robustness. For more information, see “Tune Weights”.

h Disturbance and noise models — The internal prediction model that the controller uses to
calculate the control action typically consists of the plant model augmented with models for
disturbances and measurement noise affecting the plant. Disturbance models specify the
dynamic characteristics of the unmeasured disturbances on the inputs and outputs,
respectively, so they can be better rejected. By default, these disturbance models are
assumed to be integrators (therefore allowing the controller to reject step-like disturbances)
unless you specify them otherwise. Measurement noise is typically assumed to be white. For
more information on plant and disturbance models see “MPC Prediction Models” on page 2-
3, and “Adjust Disturbance and Noise Models”.

1 Introduction
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After creating the mpc object, good practice is to use functions such as cloffset to calculate
the closed loop steady state output sensitivities, therefore checking whether the controller can
reject constant output disturbances. The more general review also inspects the object for
potential problems. To perform a deeper sensitivity and robustness analysis for the time frames
in which you expect no constraint to be active, you can also convert the unconstrained controller
to an LTI system object using ss, zpk, or tf. For related examples, see “Review Model Predictive
Controller for Stability and Robustness Issues”, “Test MPC Controller Robustness using MPC
Designer”, “Compute Steady-State Gain”, and “Extract Controller”.

Note that many of the recommended parameter choices are incorporated in the default values of
the mpc object; however, since each of these parameter is normally the result of several problem-
dependent trade offs, you have to select the parameters that make sense for your particular plant
and requirements.

4 Simulate closed loop — After you create an MPC controller, you typically evaluate the
performance of your controller by simulating it in closed loop with your plant using one of the
following options.

• From the MATLAB command line you can simulate the closed loop using sim (more
convenient for linear plant models) or mpcmove (more flexible, allowing for more general
discrete time plants or disturbance signals).

• From Simulink, you can use the MPC Controller block (which takes your mpc object as a
parameter) in closed loop with your plant model built in Simulink. This option allows for the
greatest flexibility in simulating more complex systems and for easy generation of production
code from your controller.

• MPC Designer allows you to simulate the closed loop response while at the same time tuning
the controller parameters.

Note that any of these options allows you to also simulate model mismatches (cases in which the
actual plant is slightly different from the internal plant model that the controller uses for
prediction). For a related example, see “Simulating MPC Controller with Plant Model Mismatch”.
When reference and measured disturbances are known ahead of time, MPC can use this
information (also known as look-ahead, or previewing) to improve the controller performance.
See “Signal Previewing” for more information and “Improving Control Performance with Look-
Ahead (Previewing)” for a related example. Similarly, you can specify tuning weights and
constraints that vary over the prediction horizon. For related examples, see “Update Constraints
at Run Time”, “Vary Input and Output Bounds at Run Time”, “Tune Weights at Run Time”, and
“Adjust Horizons at Run Time”.

5 Refine design — After an initial evaluation of the closed loop you typically need to refine the
design by adjusting the controller parameters and evaluating different simulation scenarios. In
addition to the parameters described in step 3, you can consider:

• Using manipulated variable blocking. For more information, see “Manipulated Variable
Blocking”.

• For over-actuated systems, setting reference targets for the manipulated variables. For a
related example, see “Setting Targets for Manipulated Variables”.

• Tuning the gains of the Kalman state estimator (or designing a custom state estimator). For
more information and related examples, see “Controller State Estimation”, “Custom State
Estimation”, and “Implement Custom State Estimator Equivalent to Built-In Kalman Filter”.

• Specifying terminal constraints. For more information and a related example, see “Terminal
Weights and Constraints” and “Provide LQR Performance Using Terminal Penalty Weights”.

 What is Model Predictive Control?
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• Specifying custom constraints. For related examples, see “Constraints on Linear
Combinations of Inputs and Outputs” and “Use Custom Constraints in Blending Process”.

• Specifying off-diagonal cost function weights. For an example, see “Specifying Alternative
Cost Function with Off-Diagonal Weight Matrices”.

6 Speed up execution — See “MPC Controller Deployment” on page 1-7.
7 Deploy controller — See “MPC Controller Deployment” on page 1-7.

Control Nonlinear and Time-Varying Plants
Often the plant to be controlled can be accurately approximated by a linear plant only locally, around
a given operating point. This approximation might no longer be accurate as time passes and the plant
operating point (or parameters) changes.

You can use several approaches to deal with these cases, from the simpler to more general and
complicated.

1 Adaptive MPC — If the order (and the time delays) of the plant do not change, you can design a
single MPC controller (for example for the initial operating point), and then at run-time you can
update the controller prediction model at each time step (while the controller still assumes that
the prediction model stays constant in the future, across its prediction horizon).

Note that while this approach is the simplest, it requires you to continuously (that is, at each time
step) calculate the linearized plant that has to be supplied to the controller. You can do so in
three main ways.

a If you have a reliable plant model, you can extract the local linear plant online by linearizing
the equations, assuming this process is not too computationally expensive. If you have simple
symbolic equations for your plant model, you might be able to derive, offline, a symbolic
expression of the linearized plant matrices at any given operating condition. Online, you can
then calculate these matrices and supply them to the adaptive MPC controller without
having to perform a numerical linearization at each time step. For an example using this
strategy, see “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization”.

b Alternatively, you can extract an array of linearized plant models offline, covering the
relevant regions of the state-input space, and then online you can use a linear parameter-
varying (LPV) plant that obtains, by interpolation, the linear plant at the current operating
point. For an example using this strategy, see “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Linear Parameter-Varying System”.

c If the plant is not accurately represented by a mathematical model, but you can assume a
known structure with some estimates of its parameters, stability, and a minimal amount of
input noise, you can use the past plant inputs and outputs to estimate a model of the plant
online, although this can be somewhat computationally intensive. For an example using this
strategy, see “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model
Estimation”.

This approach requires an mpc object and either the mpcmoveAdaptive function or the Adaptive
MPC Controller block. For more information, see “Adaptive MPC” and “Model Updating
Strategy”.

2 Linear Time Varying MPC — This approach is a kind of adaptive MPC in which the controller
knows in advance how its internal plant model changes in the future, and therefore uses this
information when calculating the optimal control across the prediction horizon. Here, at every

1 Introduction
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time step, you supply to the controller not only the current plant model but also the plant models
for all the future steps, across the whole prediction horizon. To calculate the plant models for the
future steps, you can use the manipulated variables and plant states predicted by the MPC
controller at each step as operating points around which a nonlinear plant model can be
linearized.

This approach is particularly useful when the plant model changes considerably (but predictably)
within the prediction horizon. It requires an mpc object and using mpcmoveAdaptive or the
Adaptive MPC Controller block. For more information, see “Time-Varying MPC”.

3 Gain-Scheduled MPC — In this approach you design multiple MPC controllers offline, one for
each relevant operating point. Then, online, you switch the active controller as the plant
operating point changes. While switching the controller is computationally simple, this approach
requires more online memory (and in general more design effort) than adaptive MPC. It should
be reserved for cases in which the linearized plant models have different orders or time delays
(and the switching variable changes slowly, with respect to the plant dynamics). To use gain-
scheduled MPC. you create an array of mpc objects and then use the mpcmoveMultiple function
or the Multiple MPC Controllers block for simulation. For more information, see “Gain-Scheduled
MPC”. For an example, see “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor”.

4 Nonlinear MPC — You can use this strategy to control highly nonlinear plants when all the
previous approaches are unsuitable, or when you need to use nonlinear constraints or non-
quadratic cost functions. This approach is more computationally intensive than the previous
ones, and it also requires you to design an implement a nonlinear state estimator if the plant
state is not completely available. Two nonlinear MPC approaches are available.

a Multistage Nonlinear MPC — For a multistage MPC controller, each future step in the
horizon (stage) has its own decision variables and parameters, as well as its own nonlinear
cost and constraints. Crucially, cost and constraint functions at a specific stage are functions
only of the decision variables and parameters at that stage. While specifying multiple costs
and constraint functions can require more design time, it also allows for an efficient
formulation of the underlying optimization problem and a smaller data structure, which
significantly reduces computation times compared to generic nonlinear MPC. Use this
approach if your nonlinear MPC problem has cost and constraint functions that do not
involve cross-stage terms, as is often the case. To use multistage nonlinear MPC you need to
create an nlmpcMultistage object, and then use the nlmpcmove function or the
Multistage Nonlinear MPC Controller block for simulation. For more information, see
“Multistage Nonlinear MPC”.

b Generic Nonlinear MPC — This method is the most general, and computationally expensive,
form of MPC. As it explicitly provides standard weights and linear bounds settings, it can be
a good starting point for a design where the only nonlinearity comes from the plant model.
Furthermore, you can use the RunAsLinearMPC option in the nlmpc object to evaluate
whether linear, time varying, or adaptive MPC can achieve the same performance. If so, use
these design options, and possibly evaluate gain scheduled MPC; otherwise, consider
multistage nonlinear MPC. Use generic nonlinear MPC only as an initial design, or when all
the previous design options are not viable. To use generic nonlinear MPC, you need to create
an nlmpc object, and then use the nlmpcmove function or the Nonlinear MPC Controller
block for simulation. For more information, see “Generic Nonlinear MPC”.

MPC Controller Deployment
When you are satisfied with the simulation performance of your controller design, you typically look
for ways to speed up the execution, in an effort to both optimize the design for future simulations and
to meet the stricter computational requirements of embedded applications.

 What is Model Predictive Control?
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You can use several strategies to improve the computational performance of MPC controllers.

1 Try to increase the sample time — The sampling frequency must be high enough to cover the
significant bandwidth of the system. However, if the sample time is too small, not only do you
reduce the available computation time for the controller but you must also use a larger
prediction horizon to cover the system response, which increases computational requirements.

2 Try to shorten prediction and control horizons — Since both horizons directly impact the total
number of decision variables and constraints in the resulting optimization problem, they heavily
affect both memory usage and the number of required calculations. Therefore, check whether
you can obtain similar tracking responses and robustness to uncertainties with shorter horizons.
Note that sample time plays a role too. The sampling frequency needs to be high enough
(equivalently the sample time small enough) to cover the significant bandwidth of the system.
However, if the sample time is too small, not only you have a shorter available execution time on
the hardware, but you also need a larger number of prediction steps to cover the system
response, which results in a more computationally expensive optimization problem to be solved
at each time step.

3 Use varying parameters only when needed — Normally Model Predictive Control Toolbox allows
you to vary some parameters (such as weights or constraints coefficients) at run-rime. While this
capability is useful in some cases, it considerably increases the complexity of the software.
Therefore, unless specifically needed, for deployment, consider explicitly specifying such
parameters as constants, thus preventing the possibility of changing them online. For related
examples, see “Update Constraints at Run Time”, “Vary Input and Output Bounds at Run Time”,
“Tune Weights at Run Time”, and “Adjust Horizons at Run Time”.

4 Limit the maximum number of iterations that your controller can use to solve the quadratic
optimization problem, and configure it to use the current suboptimal solution when the maximum
number of iterations is reached. Using a suboptimal solution shortens the time needed by the
controller to calculate the control action, and in some cases it does not significantly decrease
performance. In any case, since the number of iterations can change dramatically from one
control interval to the next, for real time applications, it is recommended to limit the maximum
number of iterations. Doing so helps ensuring that the worst-case execution time does not exceed
the total computation time allowed on the hardware platform, which is determined by the
controller sample time. For a related example, see “Use Suboptimal Solution in Fast MPC
Applications”.

5 Tune the solver and its options — The default Model Predictive Control Toolbox solver is a
"dense," "active set" solver based on the KWIK algorithm, and it typically performs well in many
cases. However, if the total number of manipulated variables, outputs, and constraints across the
whole horizon is large, you might consider using an interior point solver. If the internal plant is
highly open-loop unstable, consider using a sparse solver. For an overview of the optimization
problem, see “Optimization Problem”. For more information on the solvers, see “QP Solvers” and
“Configure Optimization Solver for Nonlinear MPC”. For related examples, see “Simulate MPC
Controller with a Custom QP Solver” and “Optimizing Tuberculosis Treatment Using Nonlinear
MPC with a Custom Solver”.

For application with extremely fast sample time, consider using explicit MPC. It can be proven that
the solution to the linear MPC problem (quadratic cost function, linear plant and constraints) is
piecewise affine (PWA) on polyhedra. In other words, the constraints divide the state space into
polyhedral "critical" regions in which the optimal control action is an affine (linear plus a constant)
function of the state. The idea behind explicit MPC is to precalculate, offline and once for all, these
functions of the state for every region. These functions can then be stored in your controller. At run
time, the controller then selects and applies the appropriate state feedback law, depending on the
critical region that the current operating point is in. Since explicit MPC controllers do not solve an
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optimization problem online, they require much fewer computations and are therefore useful for
applications requiring small sample times. On the other hand, they also have a much larger memory
footprint. Indeed, excessive memory requirements can render this approach no longer viable for
medium to large problems. Also, since explicit MPC pre-computes the controller offline, it does not
support runtime updates of parameters such as weights, constraints or horizons.

To use explicit MPC, you need to generate an explicitMPC object from an existing mpc object and
then use the mpcmoveExplicit function or the Explicit MPC Controller block for simulation. For
more information, see “Explicit MPC”.

A final option to consider to improve computational performance of both implicit and explicit MPC is
to simplify the problem. Some parameters, such as the number of constraints and the number state
variables, greatly increase the complexity of the resulting optimization problem. Therefore, if the
previous options are not satisfying, consider retuning these parameters (and potentially use a simpler
lower-fidelity prediction model) to simplify the problem.

Once you are satisfied with the computational performance of your design, you can generate code for
deployment to real-time applications from MATLAB or Simulink. For more information, see “Generate
Code and Deploy Controller to Real-Time Targets”.

See Also
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MPC Signal Types
For MPC design purposes, signals are usually categorized into different input and output types.
Typically you use setmpcsignals to specify, in your plant model, whether an input or output signal
belongs to one of the following categories.

Inputs
The plant inputs are the independent variables affecting the plant. As shown in “MPC Prediction
Models” on page 2-3, there are three types:

Measured disturbances

The controller can't adjust them, but uses them for feedforward compensation.

Manipulated variables

The controller adjusts these in order to achieve its goals.

Unmeasured disturbances

These are independent inputs of which the controller has no direct knowledge, and for which it must
compensate.

Outputs
The plant outputs are the dependent variables (outcomes) you wish to control or monitor. As shown in
“MPC Prediction Models” on page 2-3, there are two types:

Measured outputs

The controller uses these to estimate unmeasured quantities and as feedback on the success of its
adjustments.

Unmeasured outputs

The controller estimates these based on available measurements and the plant model. The controller
can also hold unmeasured outputs at setpoints or within constraint boundaries.

See Also
setmpcsignals

More About
• “MPC Prediction Models” on page 2-3
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MPC Prediction Models
Model predictive controllers use plant, disturbance, and noise models for prediction and state
estimation. The different signal types are described in “MPC Signal Types” on page 2-2. The model
structure used in an MPC controller appears in the following illustration.

Plant Model
You can specify the plant model in one of the following linear-time-invariant (LTI) formats:

• Numeric LTI models — Transfer function (tf), state space (ss), zero-pole-gain (zpk)
• Identified models (requires System Identification Toolbox) — idss, idtf, idproc, and idpoly

The MPC controller performs all estimation and optimization calculations using a discrete-time,
delay-free, state-space system with dimensionless input and output variables. Therefore, when you
specify a plant model in the MPC controller, the software performs the following, if needed:

1 Conversion to state space — The ss command converts the supplied model to an LTI state-space
model.

2 Discretization or resampling — If the model sample time differs from the MPC controller sample
time (defined in the Ts property), one of the following occurs:

• If the model is continuous time, the c2d command converts it to a discrete-time LTI object
using the controller sample time.

• If the model is discrete time, the d2d command resamples it to generate a discrete-time LTI
object using the controller sample time.

3 Delay removal — If the discrete-time model includes any input, output, or internal delays, the
absorbDelay command replaces them with the appropriate number of poles at z = 0, increasing
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the total number of discrete states. The InputDelay, OutputDelay, and InternalDelay
properties of the resulting state-space model are all zero.

4 Conversion to dimensionless input and output variables — The MPC controller enables you to
specify a scale factor for each plant input and output variable. If you do not specify scale factors,
they default to 1. The software converts the plant input and output variables to dimensionless
form as follows:

xp k + 1 = Apxp k + BSiup k

yp k = So
−1Cxp k + So

−1DSiup k .

where Ap, B, C, and D are the constant zero-delay state-space matrices from step 3, and:

• Si is a diagonal matrix of input scale factors in engineering units.
• So is a diagonal matrix of output scale factors in engineering units.
• xp is the state vector from step 3 in engineering units (including any absorbed delay states).

No scaling is performed on state variables.
• up is a vector of dimensionless plant input variables, including manipulated variables,

measured disturbances, and unmeasured input disturbances.
• yp is a vector of dimensionless plant output variables.

The resulting plant model has the following equivalent form:

xp k + 1 = Apxp k + Bpuu k + Bpvv k + Bpdd k
yp k = Cpxp k + Dpuu k + Dpvv k + Dpdd k .

Here, Cp = So
−1C, Bpu, Bpv, and Bpd are the corresponding columns of BSi. Also, Dpu, Dpv, and Dpd

are the corresponding columns of So
−1DSi. Finally, u(k), v(k), and d(k) are the dimensionless

manipulated variables, measured disturbances, and unmeasured input disturbances, respectively.

The MPC controller enforces the restriction of Dpu = 0, which means that the controller does not
allow direct feedthrough from any manipulated variable to any plant output.

Input Disturbance Model
If your plant model includes unmeasured input disturbances, d(k), the input disturbance model
specifies the signal type and characteristics of d(k). See “Controller State Estimation” for more
information about the model.

The getindist command provides access to the model in use.

The input disturbance model is a key factor that influences the following controller performance
attributes:

• Dynamic response to apparent disturbances — The character of the controller response when the
measured plant output deviates from its predicted trajectory, due to an unknown disturbance or
modeling error.

• Asymptotic rejection of sustained disturbances — If the disturbance model predicts a sustained
disturbance, controller adjustments continue until the plant output returns to its desired
trajectory, emulating a classical integral feedback controller.

2 Building Models
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You can provide the input disturbance model as an LTI state-space (ss), transfer function (tf), or
zero-pole-gain (zpk) object using setindist. The MPC controller converts the input disturbance
model to a discrete-time, delay-free, LTI state-space system using the same steps used to convert the
plant model on page 2-3. The result is:

xid k + 1 = Aidxid k + Bidwid k
d k = Cidxid k + Didwid k .

where Aid, Bid, Cid, and Did are constant state-space matrices, and:

• xid(k) is a vector of nxid ≥ 0 input disturbance model states.
• dk(k) is a vector of nd dimensionless unmeasured input disturbances.
• wid(k) is a vector of nid ≥ 1 dimensionless white noise inputs, assumed to have zero mean and unit

variance.

If you do not provide an input disturbance model, then the controller uses a default model, which has
integrators with dimensionless unity gain added to its outputs. An integrator is added for each
unmeasured input disturbance, unless doing so would cause a violation of state observability. In this
case, a static system with dimensionless unity gain is used instead.

Output Disturbance Model
The output disturbance model is a special case of the more general input disturbance model. Its
output, yod(k), is directly added to the plant output rather than affecting the plant states. The output
disturbance model specifies the signal type and characteristics of yod(k), and it is often used in
practice. See “Controller State Estimation” for more details about the model.

The getoutdist command provides access to the output disturbance model in use.

You can specify a custom output disturbance model as an LTI state-space (ss), transfer function (tf),
or zero-pole-gain (zpk) object using setoutdist. Using the same steps as for the plant model on
page 2-3, the MPC controller converts the specified output disturbance model to a discrete-time,
delay-free, LTI state-space system. The result is:

xod k + 1 = Aodxod k + Bodwod k
yod k = Codxod k + Dodwod k .

where Aod, Bod, Cod, and Dod are constant state-space matrices, and:

• xod(k) is a vector of nxod ≥ 1 output disturbance model states.
• yod(k) is a vector of ny dimensionless output disturbances to be added to the dimensionless plant

outputs.
• wod(k) is a vector of nod dimensionless white noise inputs, assumed to have zero mean and unit

variance.

If you do not specify an output disturbance model, then the controller uses a default model, which has
integrators with dimensionless unity gain added to some or all of its outputs. These integrators are
added according to the following rules:

• No disturbances are estimated, that is no integrators are added, for unmeasured plant outputs.
• An integrator is added for each measured output in order of decreasing output weight.

 MPC Prediction Models

2-5



• For time-varying weights, the sum of the absolute values over time is considered for each
output channel.

• For equal output weights, the order within the output vector is followed.
• For each measured output, an integrator is not added if doing so would cause a violation of state

observability. Instead, a gain with a value of zero is used instead.

If there is an input disturbance model, then the controller adds any default integrators to that model
before constructing the default output disturbance model.

Measurement Noise Model
One controller design objective is to distinguish disturbances, which require a response, from
measurement noise, which should be ignored. The measurement noise model specifies the expected
noise type and characteristics. See “Controller State Estimation” for more details about the model.

Using the same steps as for the plant model on page 2-3, the MPC controller converts the
measurement noise model to a discrete-time, delay-free, LTI state-space system. The result is:

xn k + 1 = Anxn k + Bnwn k
yn k = Cnxn k + Dnwn k .

Here, An, Bn, Cn, and Dn are constant state space matrices, and:

• xn(k) is a vector of nxn ≥ 0 noise model states.
• yn(k) is a vector of nym dimensionless noise signals to be added to the dimensionless measured

plant outputs.
• wn(k) is a vector of nn ≥ 1 dimensionless white noise inputs, assumed to have zero mean and unit

variance.

If you do not supply a noise model, the default is a unity static gain: nxn = 0, Dn is an nym-by-nym
identity matrix, and An, Bn, and Cn are empty.

For an mpc controller object, MPCobj, the property MPCobj.Model.Noise provides access to the
measurement noise model.

Note If the minimum eigenvalue of DnDn
T is less than 1x10–8, the MPC controller adds 1x10–4 to each

diagonal element of Dn. This adjustment makes a successful default Kalman gain calculation more
likely.

See Also

More About
• “MPC Signal Types” on page 2-2
• “Controller State Estimation”
• “Adjust Disturbance and Noise Models”
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CSTR Model
The adiabatic continuous stirred tank reactor (CSTR) is a common chemical system in the process
industry, and it is described extensively in [1]. A single first-order exothermic and irreversible
reaction, A → B, takes place in the vessel, which is assumed to be always perfectly mixed. The inlet
stream of reagent A enters the tank at a constant volumetric rate. The product stream B exits
continuously at the same volumetric rate, and liquid density is constant. Thus, the volume of reacting
liquid is constant. The following figure shows a schematic diagram of the vessel and the surrounding
cooling jacket.

The inputs of the CSTR model are arranged in the vector u(t) and are as follows.

• u1 — CAf, the concentration of reagent A in the inlet feed stream, measured in kmol/m3

• u2 — Tf, the temperature of the inlet feed stream, measured in K
• u3 — Tc, the temperature of the jacket coolant, measured in K

The first two inputs (concentration and temperature of the inlet reagent feed stream, sometimes also
indicated as CAi and Ti, respectively) are normally assumed to be constant unmeasured disturbances,
while the third (temperature of the coolant) is the control input used to control the process. Note that
the diagram is a simplified sketch; in reality the coolant flow surrounds the whole reactor jacket, and
not just the bottom of it.

The states of the model are arranged in the vector x(t).

• x1 — CA, the concentration of reagent A in the reactor, measured in kmol/m3

• x2 — T, the temperature in the reactor, measured in K

 CSTR Model
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Nonlinear Model
The CSTR system is modeled using basic mass balance and energy conservation principles. The
change of the concentration of reagent A in the vessel per time unit can be modeled as follows.

dCA
dt = F

V CAf (t) − CA(t) − r(t)

The first term, where V is the reactor volume and F is the volumetric flow rate, expresses the
concentration difference between the inlet and the stream. The second term is the reaction rate per
unit of volume, and it is described by the Arrhenius rate law, as follows.

r(t) = k0e
−E

RT(t)CA(t)

Here:

• E is the activation energy.
• R is the Boltzmann ideal gas constant.
• T is the temperature in the reactor.
• k0 is an unknown nonthermal constant.

The rate law states that the reaction rate increases exponentially with the absolute temperature.

Similarly, using the energy balance principle, and assuming constant volume in the reactor, the
temperature change per unit of time can be modeled as follows.

dT(t)
dt = F

V Tf (t) − T(t) − ΔH
ρCp

r(t) − UA
ρCpV T(t) − Tc(t)

Here, the first and third terms describe changes due to the inlet feed stream temperature Tf and
jacket coolant temperature Tc, respectively. The second term represents the influence on the reactor
temperature caused by the chemical reaction in the vessel.

In this equation:

• ΔH is the heat of the reaction, per mole.
• Cp is a heat capacity coefficient.
• ρ is a density coefficient.
• U is an overall heat transfer coefficient.
• A is the area for the heat exchange (coolant/vessel interface area).

A Simulink representation of this nonlinear reactor model is available in the models
mpc_cstr_plant, CSTR_OpenLoop, and CSTR_INOUT. It is used in several examples illustrating
how to linearize nonlinear models and how to use linear, adaptive, gain-scheduled, and nonlinear
MPC to control a nonlinear plant.

2 Building Models

2-8



Parameters of the Nonlinear CSTR Simulink Model

Parameter Value Unit Description
F 1 m3/h Volumetric flow rate
V 1 m3 Reactor volume
R 1.985875 kcal/(kmol·K) Boltzmann's ideal gas constant
ΔH -5,960 kcal/kmol Heat of reaction per mole
E 11,843 kcal/kmol Activation energy per mole
k0 34,930,800 1/h Pre-exponential nonthermal factor
ρCp 500 kcal/(m3·K) Density multiplied by heat capacity
UA 150 kcal/(K·h) Overall heat transfer coefficient multiplied by

tank area

In the model, the initial value of CA is 8.5698 kmol/m3 and the initial value for T is 311.2639 K. This
operating point is an equilibrium when the inflow feed concentration CAf is 10 kmol/m3, the inflow
feed temperature Tf is 300 K, and the coolant temperature Tc is 292 K.

In the example “Non-Adiabatic Continuous Stirred Tank Reactor: MATLAB File Modeling with
Simulations in Simulink®” (System Identification Toolbox), you use the above equations to estimate
the last four parameters when the disturbance inputs CAf and Tf stay around to 10 kmol/m3 and 298 K,
respectively, and the control input Tc ranges from 273 to 322 K. The first state variable, CA, ranges
from 0 to 10 kmol/m3 and the second one, T, ranges from 310 to 390 K. The values of the last four
parameters are estimated to be 11,854, 35,588,869, 500.7095, and 150.1275, respectively, with the
same units as in the table.

Linear Model
A linearized model of the CSTR, in which Tf does not deviate from its nominal condition, can be
represented by the following linear differential equations.

dC′A
dt = a11C′A + a12T′ + b11T′c + b12C′Ai

dT′
dt = a21C′A + a22T′ + b21T′c + b22C′Ai

Here, the primes (for example, C′A) denote a deviation from the nominal steady-state condition at
which the model has been linearized. The constants aij and bij are the coefficients of the Jacobian
matrices (normally indicated as A and B) with respect to state and input, respectively. A symbolic
expression of the majority of these coefficients is given in [1].

Since measurement of reactant concentrations is often difficult, a common assumption is that T is the
only measured output, while CA is unmeasured. For similar reasons, CAf is commonly assumed to be
an unmeasured disturbance. In general, Tc, is the manipulated variable used to control the reactor.

The linearized model fits the general state-space format

dx
dt = Ax + Bu

y = Cx + Du,

 CSTR Model
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where

x =
C′A
T′

, u =
T′c
C′Ai

, y =
T′

C′A
,

A =
a11 a12
a21 a22

, B =
b11 b12
b21 b22

, C =
0 1
1 0

, D =
0 0
0 0

The following code shows how to define such a model for some specific values of the aij and bij
constants:

A = [   -5  -0.3427; 
     47.68    2.785];
B = [    0   1
       0.3   0];
C = flipud(eye(2));
D = zeros(2);
CSTR = ss(A,B,C,D);

These values correspond to a linearization around an operating point in which CA is 2 kmol/m3, T is
373 K, CAf is 10 kmol/m3, Tf is 300 K, and Tc is 299 K. See “Linearization Using MATLAB Code” on
page 2-21 for more information.

You can specify the input, output, and state names for your CSTR model. Also, you can specify the
input and output signals types.

CSTR.InputName = {'T_c', 'C_A_f'};  % set names of input signals
CSTR.OutputName = {'T', 'C_A'};     % set names of output signals
CSTR.StateName = {'C_A', 'T'};      % set names of state variables

% assign input and output signals to different MPC categories
CSTR=setmpcsignals(CSTR,'MV',1,'UD',2,'MO',1,'UO',2);

Here, MV, UD, MO, and UO stand for "Manipulated Variable," "Unmeasured Disturbance," "Measured
Output," and "Unmeasured Output," respectively.

View the CSTR model and its properties.

CSTR

CSTR =
 
  A = 
            C_A        T
   C_A       -5  -0.3427
   T      47.68    2.785
 
  B = 
          T_c  C_A_f
   C_A      0      1
   T      0.3      0
 
  C = 
        C_A    T
   T      0    1
   C_A    1    0
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  D = 
          T_c  C_A_f
   T        0      0
   C_A      0      0
 
Input groups:              
       Name        Channels
    Manipulated       1    
    Unmeasured        2    
                           
Output groups:            
       Name       Channels
     Measured        1    
    Unmeasured       2    
                          
Continuous-time state-space model.

In summary, in this linearized model, the first two state variables are the concentration of reagent
and the temperature of the reactor, while the first two inputs are the coolant temperature and the
inflow feed reagent concentration.

For details on how to obtain this linear model, see the two examples in “Linearize Simulink Models”
on page 2-21. In the first example the linearization is done in MATLAB, while in the second one it is
done using Model Linearizer in Simulink.

Examples using a CSTR model
The following examples use the linear CSTR model.

• “Construct Linear Time Invariant Models” on page 2-14 – Create LTI state-space models for MPC
design using the linear CSTR model.

• “Design Controller Using MPC Designer” on page 3-2 – Use a linear CSTR model where the
reactor temperature is a measured output. Using MPC Designer, you design an MPC controller
that stabilizes the closed-loop while constraining the CSTR coolant temperature and its rate of
change.

• “Design MPC Controller at the Command Line” on page 3-19 – Design the same controller
designed in the previous example but using MATLAB instructions.

• “Test MPC Controller Robustness using MPC Designer” – Test the sensitivity of your MPC
controller to prediction errors using simulations in MPC Designer.

• “Compute Steady-State Gain” – Analyze the steady-state performance of an MPC controller.
• “Compare Multiple Controller Responses Using MPC Designer” – Compare multiple controller

responses using MPC Designer.

The following examples use the nonlinear CSTR model.

The example “Linearize Simulink Models Using MPC Designer” on page 2-30 shows how to linearize
the nonlinear Simulink model of the reactor at different operating points, and using different
approaches, in the context of designing an MPC controller, using MPC Designer.

Similarly, in the example “Design MPC Controller in Simulink” on page 3-31, the MPC Designer is
used first to linearize the same nonlinear model around an operating point in which CA is around 2
(kg·mol)/m3 and then to design an MPC controller for the linearized plant. In this example CA is the
only measured output (and Tc is the control input).
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The example “Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations”
uses a for loop to successively linearize the nonlinear model using the linmod command, redesign a
linear MPC controller, calculate the control input, and feed it back into the nonlinear Simulink model
at each time step. This approach is no longer recommended, use “Adaptive MPC” or “Gain-Scheduled
MPC” instead.

The example “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization”
uses the Adaptive MPC Controller block to simulate the closed-loop directly in Simulink. Here a
linearization block is used to extract a linear plant model from the nonlinear equations at each time
step. In general MPC adaptive control is the preferred approach when a linear plant model can be
obtained at run time and when all the linearized plant models have the same order and time delay.

Similarly, in the example “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model
Estimation” a Recursive Polynomial Model Estimator is used (instead of a linearization block) to
identify a two-input (Tf and Tc) and one-output (T) discrete time ARX model based on the measured
temperatures at each control interval. The estimated model is then converted into state space and fed
to an Adaptive MPC Controller block, which provides the control input to the nonlinear plant. Online
estimation can be a good approach when the plant is stable and slowly varying, and its equations are
not accurately known.

In the example “Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-
Varying System” a linear parameter varying (LPV) system consisting of three linear plant models (at
an initial, intermediate, and final operating point) is constructed offline. At run time, the LPV System
block feeds an appropriate interpolation to an Adaptive MPC Controller block, which provides the
control input to the nonlinear plant. Plant interpolation can be a good approach when, at a given
point, the interpolated plant is a good approximation of the actual one, the scheduling variable varies
comparatively slowly, and obtaining a linearized plant at run time might be too computationally
expensive or unsafe.

In the example “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” three different MPC
controllers (for the plant at an initial, intermediate, and final operating point) are designed. These
controllers are stored in the Multiple MPC Controllers block and are switched at run time at
appropriate points along the transition path. Switching controllers is a good approach when the
linearized plant models have different order or time delays.

Finally, in the example “Nonlinear Model Predictive Control of an Exothermic Chemical Reactor”, the
nonlinear plant is controlled by a single Nonlinear MPC Controller block, using Tc as the control input
and CA as the only measured output. In general, nonlinear MPC control is the remaining strategy to
control highly nonlinear plants when all the previous approaches are unsuitable, or you need to use
nonlinear constraints or non-quadratic cost functions.

References
[1] Bequette, B., Process Dynamics: Modeling, Analysis and Simulation, Prentice-Hall, 1998, Module

8, pp. 641-660.
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More About
• “What is Model Predictive Control?” on page 1-3
• “MPC Prediction Models” on page 2-3
• “Construct Linear Time Invariant Models” on page 2-14
• “Model-Based Design with Simulink” (Simulink)
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Construct Linear Time Invariant Models
Model Predictive Control Toolbox software supports the same LTI model formats as does Control
System Toolbox software. You can use whichever is most convenient for your application and convert
from one format to another. For more details, see “Basic Models”.

Transfer Function Models
A transfer function (TF) relates a particular input/output pair of (possibly vector) signals. For
example, if u(t) is a plant input and y(t) is an output, the transfer function relating them might be:

Y(s)
U(s) = G(s) = s + 2

s2 + s + 10
e−1.5s

This TF consists of a numerator polynomial, s+2, a denominator polynomial, s2+s+10, and a delay,
which is 1.5 time units here. You can define G using Control System Toolbox tf function:

Gtf1 = tf([1 2], [1 1 10],'OutputDelay',1.5)

Transfer function:
                 s + 2
exp(-1.5*s) * ------------
              s^2 + s + 10

Zero/Pole/Gain Models
Like the TF format, the zero/pole/gain (ZPK) format relates an input/output pair of (possibly vector)
signals. The difference is that the ZPK numerator and denominator polynomials are factored, as in

G(s) = 2.5 s + 0.45
(s + 0.3)(s + 0.1 + 0.7i)(s + 0.1 − 0.7i)

(zeros and/or poles are complex numbers in general).

You define the ZPK model by specifying the zero(s), pole(s), and gain as in

poles = [-0.3, -0.1+0.7*i, -0.1-0.7*i];
Gzpk1 = zpk(-0.45,poles,2.5);

State-Space Models
The state-space format is convenient if your model is a set of LTI differential and algebraic equations.

The linearized model of a Continuously Stirred Tank Reactor (CSTR) is shown in “CSTR Model” on
page 2-7. In the model, the first two state variables are the concentration of reagent (here referred to
as CA and measured in kmol/m3) and the temperature of the reactor (here referred to as T, measured
in K), while the first two inputs are the coolant temperature (Tc, measured in K, used to control the
plant), and the inflow feed reagent concentration CAf, measured in kmol/m3, (often considered as
unmeasured disturbance).

A state-space model can be defined as follows:

A = [   -5  -0.3427; 
     47.68    2.785];
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B = [    0   1
       0.3   0];
C = [0 1
     1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

This defines a continuous-time state-space model stored in the variable CSTR. The model is
continuous time because no sampling time was specified, and therefore a default sampling value of
zero (which means that the model is continuous time) is assumed. You can also specify discrete-time
state-space models. You can specify delays in both continuous-time and discrete-time models.

LTI Object Properties
The ss function in the last line of the above code creates a state-space model, CSTR, which is an LTI
object. The tf and zpk commands described in “Transfer Function Models” on page 2-14 and “Zero/
Pole/Gain Models” on page 2-14 also create LTI objects. Such objects contain the model parameters
as well as optional properties.

Additional LTI Input and Output Properties

The following code sets some optional input and outputs names and properties for the CSTR state-
space object:

CSTR.InputName = {'T_c', 'C_A_f'};  % set names of input signals
CSTR.OutputName = {'T', 'C_A'};     % set names of output signals
CSTR.StateName = {'C_A', 'T'};      % set names of state variables

% assign input and output signals to different MPC categories
CSTR=setmpcsignals(CSTR,'MV',1,'UD',2,'MO',1,'UO',2)

The first three lines specify labels for the input, output and state variables. The next four specify the
signal type for each input and output. The designations MV, UD, MO, and UO mean manipulated
variable, unmeasured disturbance, measured output, and unmeasured output. (See “MPC Signal
Types” on page 2-2 for definitions.) For example, the code specifies that input 2 of model CSTR is an
unmeasured disturbance. The last line causes the LTI object to be displayed, generating the following
lines in the MATLAB Command Window:

CSTR =
 
  A = 
            C_A        T
   C_A       -5  -0.3427
   T      47.68    2.785
 
  B = 
          T_c  C_A_f
   C_A      0      1
   T      0.3      0
 
  C = 
        C_A    T
   T      0    1
   C_A    1    0
 
  D = 
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          T_c  C_A_f
   T        0      0
   C_A      0      0
 
Input groups:              
       Name        Channels
    Manipulated       1    
    Unmeasured        2    
                           
Output groups:            
       Name       Channels
     Measured        1    
    Unmeasured       2    
                          
Continuous-time state-space model.

Input and Output Names

The optional InputName and OutputName properties affect the model displays, as in the above
example. The software also uses the InputName and OutputName properties to label plots and
tables. In that context, the underscore character causes the next character to be displayed as a
subscript.

Input and Output Types

As mentioned in “MPC Signal Types” on page 2-2, Model Predictive Control Toolbox software
supports three input types and two output types. In a Model Predictive Control Toolbox design,
designation of the input and output types determines the controller dimensions and has other
important consequences.

For example, suppose your plant structure were as follows:

Plant Inputs Plant Outputs
Two manipulated variables (MVs) Three measured outputs (MOs)
One measured disturbance (MD) Two unmeasured outputs (UOs)
Two unmeasured disturbances (UDs)  

The resulting controller has four inputs (the three MOs and the MD) and two outputs (the MVs). It
includes feedforward compensation for the measured disturbance, and assumes that you wanted to
include the unmeasured disturbances and outputs as part of the regulator design.

If you didn't want a particular signal to be treated as one of the above types, you could do one of the
following:

• Eliminate the signal before using the model in controller design.
• For an output, designate it as unmeasured, then set its weight to zero.
• For an input, designate it as an unmeasured disturbance, then define a custom state estimator

that ignores the input.

Note By default, the software assumes that unspecified plant inputs are manipulated variables,
and unspecified outputs are measured. Thus, if you didn't specify signal types in the above
example, the controller would have four inputs (assuming all plant outputs were measured) and
five outputs (assuming all plant inputs were manipulated variables).
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Note Since the D matrix is zero, the output does not instantly respond to change in the input. The
Model Predictive Control Toolbox software prohibits direct (instantaneous) feedthrough from a
manipulated variable to an output. For example, the CSTR state-space model could include direct
feedthrough from the unmeasured disturbance, CAf, to either CA or T but direct feedthrough from
Tc to either (measured or not) output would violate this restriction. When the model has a direct
feedthrough from Tc, you can add a small delay at this input to circumvent the problem.

For CSTR, the default Model Predictive Control Toolbox assumptions are incorrect. You must set its
InputGroup and OutputGroup properties, as illustrated in the above code, or modify the default
settings when you load the model into MPC Designer.

Use setmpcsignals to make type definition. For example:

CSTR = setmpcsignals(CSTR,'UD',2,'UO',2);

sets InputGroup and OutputGroup to the same values as in the previous example. The CSTR
display would then include the following lines:

Input groups:              
       Name        Channels
    Unmeasured        2    
    Manipulated       1    
                           

Output groups:             
       Name       Channels 
    Unmeasured       2     
     Measured        1     

Notice that setmpcsignals sets unspecified inputs to Manipulated and unspecified outputs to
Measured.

LTI Model Characteristics
Control System Toolbox software provides functions for analyzing LTI models. Some of the more
commonly used are listed below. Type the example code at the MATLAB prompt to see how they work
for the CSTR example.

Example Intended Result
damp(CSTR) Displays the damping ratio, natural frequency, and time

constant of the poles of CSTR.
pzmap(CSTR) Plots the poles and zeros of CSTR.
pole(CSTR) Calculates the poles of CSTR (to check stability, etc.).
tzero(CSTR) Calculates the transmission zeros of CSTR.
dcgain(CSTR) Calculates the steady state gain matrix of CSTR.
step(CSTR) Plots unit-step responses of CSTR.
stepinfo(CSTR) Calculates rise time, settling time, and other step-response

characteristics of CSTR.
impulse(CSTR) Plots the unit-impulse responses of CSTR.
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Example Intended Result
sigma(CSTR) Plots the singular values of the frequency response of CSTR.
bode(CSTR) Plots the Bode frequency responses of CSTR.
nyquist(CSTR) Plots the Nyquist frequency responses of CSTR.
nichols(CSTR) Plots the Nichols frequency responses of CSTR.
linearSystemAnalyzer(CSTR) Opens the Linear System Analyzer with the CSTR model

loaded. You can then display model characteristics by making
menu selections.

See Also
tf | zpk | ss | setmpcsignals

More About
• “Specify Multi-Input Multi-Output Plants” on page 2-19
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Specify Multi-Input Multi-Output Plants
Most MPC applications involve plants with multiple inputs and outputs. You can use ss, tf, and zpk
to represent a MIMO plant model. For example, consider the following model of a distillation column
[1], which has been used in many advanced control studies:

y1
y2

=

12.8e−s

16.7s + 1
−18.9e−3s

21.0s + 1
3.8e−8.1s

14.9s + 1
6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1
4.9e−3.4s

13.2s + 1

 
u1
u2
u3

Outputs y1 and y2 represent measured product purities. The controller manipulates the inputs, u1 and
u2, to hold each output at a specified setpoint. These inputs represent the flow rates of reflux and
reboiler steam, respectively. Input u3 is a measured feed flow rate disturbance.

The model consists of six transfer functions, one for each input/output pair. Each transfer function is
the first-order-plus-delay form often used by process control engineers.

Specify the individual transfer functions for each input/output pair. For example, g12 is the transfer
function from input u1 to output y2.

g11 = tf( 12.8, [16.7 1], 'IOdelay', 1.0,'TimeUnit','minutes');
g12 = tf(-18.9, [21.0 1], 'IOdelay', 3.0,'TimeUnit','minutes');
g13 = tf(  3.8, [14.9 1], 'IOdelay', 8.1,'TimeUnit','minutes');
g21 = tf(  6.6, [10.9 1], 'IOdelay', 7.0,'TimeUnit','minutes');
g22 = tf(-19.4, [14.4 1], 'IOdelay', 3.0,'TimeUnit','minutes');
g23 = tf(  4.9, [13.2 1], 'IOdelay', 3.4,'TimeUnit','minutes');

Define a MIMO system by creating a matrix of transfer function models.

DC = [g11 g12 g13
      g21 g22 g23];

Define the input and output signal names and specify the third input as a measured input
disturbance.

DC.InputName = {'Reflux Rate','Steam Rate','Feed Rate'};
DC.OutputName = {'Distillate Purity','Bottoms Purity'};
DC = setmpcsignals(DC,'MD',3);

-->Assuming unspecified input signals are manipulated variables.

Review the resulting system.

DC

DC =
 
  From input "Reflux Rate" to output...
                                      12.8
   Distillate Purity:  exp(-1*s) * ----------
                                   16.7 s + 1
 
                                   6.6
   Bottoms Purity:  exp(-7*s) * ----------
                                10.9 s + 1
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  From input "Steam Rate" to output...
                                    -18.9
   Distillate Purity:  exp(-3*s) * --------
                                   21 s + 1
 
                                  -19.4
   Bottoms Purity:  exp(-3*s) * ----------
                                14.4 s + 1
 
  From input "Feed Rate" to output...
                                        3.8
   Distillate Purity:  exp(-8.1*s) * ----------
                                     14.9 s + 1
 
                                     4.9
   Bottoms Purity:  exp(-3.4*s) * ----------
                                  13.2 s + 1
 
Input groups:              
       Name        Channels
     Measured         3    
    Manipulated      1,2   
                           
Output groups:          
      Name      Channels
    Measured      1,2   
                        
Continuous-time transfer function.

References
[1] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

See Also
ss | tf | zpk | setmpcsignals

Related Examples
• “Construct Linear Time Invariant Models” on page 2-14

2 Building Models

2-20



Linearize Simulink Models
Generally, real systems are nonlinear. To design an MPC controller for a nonlinear system, you can
model the plant in Simulink.

Although an MPC controller can regulate a nonlinear plant, the model used within the controller must
be linear. In other words, the controller employs a linear approximation of the nonlinear plant. The
accuracy of this approximation significantly affects controller performance.

To obtain such a linear approximation, you linearize the nonlinear plant at a specified operating point.

Note The following examples require Simulink Control Design software.

You can linearize a Simulink model:

• From the command line.
• Using the Model Linearizer.
• Using MPC Designer. For an example, see “Linearize Simulink Models Using MPC Designer” on

page 2-30.

Linearization Using MATLAB Code
This example shows how to obtain a linear model of a plant using a MATLAB script.

For this example the CSTR model, CSTR_OpenLoop, is linearized. The model inputs are the coolant
temperature (manipulated variable of the MPC controller), limiting reactant concentration in the feed
stream, and feed temperature. The model states are the temperature and concentration of the
limiting reactant in the product stream. Both states are measured and used for feedback control.

Obtain Steady-State Operating Point

The operating point defines the nominal conditions at which you linearize a model. It is usually a
steady-state condition.

Suppose that you plan to operate the CSTR with the output concentration, C_A, at 2 kmol/m3. The
nominal feed concentration is 10 kmol/m3, and the nominal feed temperature is 300 K.

Create and visualize an operating point specification object to define the steady-state conditions.

opspec = operspec('CSTR_OpenLoop');
opspec = addoutputspec(opspec,'CSTR_OpenLoop/CSTR',2);
opspec.Outputs(1).Known = true;
opspec.Outputs(1).y = 2;
opspec

opspec = 
 Operating point specification for the Model CSTR_OpenLoop.
 (Time-Varying Components Evaluated at time t=0)

States: 
----------
     x         Known    SteadyState     Min         Max        dxMin       dxMax   
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___________ ___________ ___________ ___________ ___________ ___________ ___________
                                                                                   
(1.) CSTR_OpenLoop/CSTR/C_A
  8.5695       false       true          0          Inf        -Inf         Inf    
(2.) CSTR_OpenLoop/CSTR/T_K
  311.267      false       true          0          Inf        -Inf         Inf    

Inputs: 
----------
  u   Known  Min   Max 
_____ _____ _____ _____
                       
(1.) CSTR_OpenLoop/Coolant Temperature
  0   false -Inf   Inf 

Outputs: 
----------
  y   Known  Min   Max 
_____ _____ _____ _____
                       
(1.) CSTR_OpenLoop/CSTR
  2   true  -Inf   Inf 

Search for an operating point that satisfies the specifications.

op1 = findop('CSTR_OpenLoop',opspec);

 Operating point search report:
---------------------------------

opreport = 
 Operating point search report for the Model CSTR_OpenLoop.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
    Min          x          Max        dxMin        dx         dxMax   
___________ ___________ ___________ ___________ ___________ ___________
                                                                       
(1.) CSTR_OpenLoop/CSTR/C_A
     0           2          Inf          0      -4.6683e-12      0     
(2.) CSTR_OpenLoop/CSTR/T_K
     0       373.1311       Inf          0      5.5451e-11       0     

Inputs: 
----------
  Min       u       Max   
________ ________ ________
                          
(1.) CSTR_OpenLoop/Coolant Temperature
  -Inf   299.0349   Inf   

Outputs: 
----------
Min  y  Max
___ ___ ___
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(1.) CSTR_OpenLoop/CSTR
 2   2   2 

The calculated operating point is C_A = 2 kmol/m3 and T_K = 373 K. Notice that the steady-state
coolant temperature is also given as 299 K, which is the nominal value of the input used to control the
plant.

To specify:

• Values of known inputs, use the Input.Known and Input.u fields of opspec
• Initial guesses for state values, use the State.x field of opspec

For example, the following code specifies the coolant temperature as 305 K and initial guess values of
the C_A and T_K states before calculating the steady-state operating point:

opspec = operspec('CSTR_OpenLoop');
opspec.States(1).x = 1;
opspec.States(2).x = 400;
opspec.Inputs(1).Known = true;
opspec.Inputs(1).u = 305;

op2 = findop('CSTR_OpenLoop',opspec)

 Operating point search report:
---------------------------------

opreport = 
 Operating point search report for the Model CSTR_OpenLoop.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
    Min          x          Max        dxMin        dx         dxMax   
___________ ___________ ___________ ___________ ___________ ___________
                                                                       
(1.) CSTR_OpenLoop/CSTR/C_A
     0        1.7787        Inf          0      -3.0198e-14      0     
(2.) CSTR_OpenLoop/CSTR/T_K
     0       376.5371       Inf          0      3.1264e-13       0     

Inputs: 
----------
Min  u  Max
___ ___ ___
           
(1.) CSTR_OpenLoop/Coolant Temperature
305 305 305

Outputs: None 
----------

op2 = 
 Operating point for the Model CSTR_OpenLoop.
 (Time-Varying Components Evaluated at time t=0)

States: 
----------
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   x    
________
        
(1.) CSTR_OpenLoop/CSTR/C_A
 1.7787 
(2.) CSTR_OpenLoop/CSTR/T_K
376.5371

Inputs: 
----------
 u 
___
   
(1.) CSTR_OpenLoop/Coolant Temperature
305

Specify Linearization Inputs and Outputs

If the linearization input and output signals are already defined in the model, as in CSTR_OpenLoop,
then use the following to obtain the signal set.

io = getlinio('CSTR_OpenLoop');

Otherwise, specify the input and output signals as shown here.

io(1) = linio('CSTR_OpenLoop/Coolant Temperature',1,'input');
io(2) = linio('CSTR_OpenLoop/Feed Concentration',1,'input');
io(3) = linio('CSTR_OpenLoop/Feed Temperature',1,'input');
io(4) = linio('CSTR_OpenLoop/CSTR',1,'output');
io(5) = linio('CSTR_OpenLoop/CSTR',2,'output');

Linearize Model

Linearize the model using the specified operating point, op1, and input/output signals, io.

sys = linearize('CSTR_OpenLoop',op1,io)

sys =
 
  A = 
            C_A      T_K
   C_A       -5  -0.3427
   T_K    47.68    2.785
 
  B = 
        Coolant Temp  Feed Concent  Feed Tempera
   C_A             0             1             0
   T_K           0.3             0             1
 
  C = 
           C_A  T_K
   CSTR/1    0    1
   CSTR/2    1    0
 
  D = 
           Coolant Temp  Feed Concent  Feed Tempera
   CSTR/1             0             0             0
   CSTR/2             0             0             0
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Continuous-time state-space model.

Linearize the model also around the operating point, op2, using the same input/output signals.

sys = linearize('CSTR_OpenLoop',op2,io)

sys =
 
  A = 
            C_A      T_K
   C_A   -5.622  -0.3458
   T_K     55.1    2.822
 
  B = 
        Coolant Temp  Feed Concent  Feed Tempera
   C_A             0             1             0
   T_K           0.3             0             1
 
  C = 
           C_A  T_K
   CSTR/1    0    1
   CSTR/2    1    0
 
  D = 
           Coolant Temp  Feed Concent  Feed Tempera
   CSTR/1             0             0             0
   CSTR/2             0             0             0
 
Continuous-time state-space model.

Linearization Using Model Linearizer in Simulink Control Design
This example shows how to linearize a Simulink model using the Model Linearizer, provided by the
Simulink Control Design software.

Open Simulink Model

This example uses the CSTR model, CSTR_OpenLoop.

open_system('CSTR_OpenLoop')

Specify Linearization Inputs and Outputs

The linearization inputs and outputs are already specified for CSTR_OpenLoop. The input signals
correspond to the outputs from the Feed Concentration, Feed Temperature, and Coolant
Temperature blocks. The output signals are the inputs to the CSTR Temperature and Residual
Concentration blocks.

To specify a signal as a linearization input or output, first in the Simulink Apps tab, click
Linearization Manager. Then, in the Simulink model window, click the signal. Finally, in the Insert
Analysis Points gallery, in the Closed Loop section, select either Input Perturbation for a
linearization input or Output Measurement for a linearization output.

Open Model Linearizer

To open the Model Linearizer, in the Apps tab, click Model Linearizer.
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Specify Residual Concentration as Known Trim Constraint

To specify the residual concentration as a known trim constant, first in the Simulink Apps tab, click
Linearization Manager. Then, in the Simulink model window, click the CA output signal from the
CSTR block. Finally, in the Insert Analysis Points gallery, in the Trim section, select Trim Output
Constraint.

In the Model Linearizer, on the Linear Analysis tab, select Operating Point > Trim Model.

In the Trim the model dialog box, on the Outputs tab:

• Select the Known check box for Channel - 1 under CSTR_OpenLoop/CSTR.
• Set the corresponding Value to 2 kmol/m3.
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Create and Verify Operating Point

In the Trim the model dialog box, click Start trimming.

The Trim progress viewer window opens up showing the optimization progress towards finding a
point in the state-input space of the model with the characteristics specified in the States, Inputs,
and Outputs tabs. After the optimization process terminates, close the trim progress window as well
as the Trim the model dialog box.

The operating point op_trim1 displays in the Linear Analysis Workspace of Model Linearizer.
Select op_trim1 to display basic information in the Linear Analysis Workspace section.

Double click op_trim1 to view the resulting operating point in the Edit dialog box.

In the Edit dialog box, select the Input tab.
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The coolant temperature at steady state is 299 K, as desired. Close the Edit dialog box.

Linearize Model

On the Linear Analysis tab, in the Operating Point drop-down list, make sure op_trim1 is
selected.

In the Linearize section, click Step to linearize the Simulink model and display the step
response of the linearized model.

This option creates the linear model linsys1 in the Linear Analysis Workspace and generates a
step response for this model. linsys1 uses op_trim1 as its operating point.

The step response from feed concentration to output CSTR/2 displays an interesting inverse
response. An examination of the linear model shows that CSTR/2 is the residual CSTR concentration,
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C_A. When the feed concentration increases, C_A increases initially because more reactant is
entering, which increases the reaction rate. This rate increase results in a higher reactor
temperature (output CSTR/1), which further increases the reaction rate and C_A decreases
dramatically.

Export Linearization Result

If necessary, you can repeat any of these steps to improve your model performance. Once you are
satisfied with your linearization result, in the Model Linearizer, drag the linear model from the
Linear Analysis Workspace section of Model Linearizer to the MATLAB Workspace section just
above it. You can now use your linear model to design an MPC controller.

See Also
linearize | Model Linearizer

Related Examples
• “Design MPC Controller in Simulink” on page 3-31
• “Design Controller Using MPC Designer” on page 3-2
• “Design MPC Controller at the Command Line” on page 3-19
• “Linearize Simulink Models Using MPC Designer” on page 2-30
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Linearize Simulink Models Using MPC Designer
This topic shows how to linearize Simulink models using MPC Designer. To do so, open the app from
a Simulink model that contains an MPC Controller block. For this example, use the
CSTR_ClosedLoop model.

open_system('CSTR_ClosedLoop')

In the model window, double-click the MPC Controller block.

Tip In the MPC Controller Block Parameters dialog box, in the Default Conditions tab, you can
define the controller sample time and signal dimensions before opening MPC Designer.

2 Building Models

2-30



In the Block Parameters dialog box, ensure that the MPC Controller field is empty, and click Design
to open MPC Designer.

Using MPC Designer, you can define the MPC structure by linearizing the Simulink model. After you
define the initial MPC structure, you can also linearize the model at different operating points and
import the linearized plants.

Note  If a controller from the MATLAB workspace is specified in the MPC Controller field, the app
imports the specified controller. In that case, the MPC structure is derived from the imported
controller. However, you can still linearize the Simulink model and import the linearized plants.

Define MPC Structure By Linearization
This example shows how to define the plant input/output structure in MPC Designer by linearizing a
Simulink model.
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On the MPC Designer tab, in the Structure section, click MPC Structure.
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Specify Signal Dimensions

In the Define MPC Structure By Linearization dialog box, in the MPC Structure section, if the
displayed signal dimensions do not match your model, click Change I/O Sizes to configure the
dimensions. Since unmeasured disturbances or unmeasured outputs in your model do not input to the
MPC Controller block, you must specify the dimensions for these signals. For this example, specify
one unmeasured disturbance signal.

Click OK.

The Unmeasured Disturbance (UD) type is added in the Simulink Signals for Plant Inputs,
without a specified block path.

Select Plant Input/Output Signals

Before linearizing the model, assign Simulink signal lines to each MPC signal type in your model. The
app uses these signals as linearization inputs and outputs.

In the Simulink Signals for Plant Inputs and Simulink Signals for Plant Outputs sections, the
Block Path is automatically defined for manipulated variables, measured outputs, and measured
disturbances. MPC Designer detects these signals since they are connected to the MPC Controller
block. If your plant has unmeasured disturbances or unmeasured outputs, select their corresponding
Simulink signal lines.

To choose a signal type, use the Selected check boxes.
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Click Select Signals. The Select Signals for MPC Input Channels dialog box opens up.

In the Simulink model window, click the signal line corresponding to the selected signal type.

The signal is highlighted, and its block path is added to the Select signals dialog box.

In the select signals dialog box, click OK.

In the Define MPC Structure By Linearization dialog box, the Block Path for the selected signal type
updates.

Note If your model has measured disturbances, you must connect the md input port of the MPC
Controller block to the same signal line of the corresponding plant inputs. For more information, see
“Connect Measured Disturbances for Linearization” on page 2-45.

Specify Operating Point

In the Simulink Operating Point section, in the drop-down list, select an operating point at which
to linearize the model. For this example, select Model Initial Condition.

For information on the different operating point options, see “Specifying Operating Points” on page 2-
38.
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Note If you select an option that generates multiple operating points for linearization, MPC
Designer uses only the first operating point to define the plant structure and linearize the model.

Define Structure and Linearize Model

Click Import.

MPC Designer linearizes the Simulink model at the specified operating point using the specified
input/output signals, and imports the linearized plant to the Plants workspace, on the right hand side
of the app. A default controller, which uses the linearized plant as its internal model and input/output
signal values at the selected operating point as nominal values, is added to the Controllers
workspace. A default simulation scenario is also added to the Scenarios workspace.

Note All the controller created in the MPC Designer share the same nominal values, since
otherwise it would not be easy to compare their responses. Therefore, if you update the nominal
values, all the controllers are affected.

Linearize Model
After you define the initial MPC structure, you can linearize the Simulink model at different operating
points and import the linearized plants. Doing so is useful for validating controller performance
against modeling errors.

On the MPC Designer tab, in the Import section, click Linearize Model.
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Select Plant Input/Output Signals

In the Simulink Signals for Plant Inputs and Simulink Signals for Plant Outputs sections, the
input/output signal configuration is the same as the one you specify when initially defining the MPC
structure.

You cannot change the signal types and dimensions once the structure is defined. However, for each
signal type, you can select different signal lines from your Simulink model. The selected lines must
have the same dimensions as those defined in the current MPC structure.
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Specify Operating Point

In the Simulink Operating Point section, in the drop-down list, you can select the operating points
at which to linearize the model.

For information on the different operating point options, see “Specifying Operating Points” on page 2-
38.

Linearize Model and Import Plant

If you click on Import, MPC Designer linearizes the Simulink model at the defined operating point
and adds the linearized plant, a default controller and a default simulation scenario to the app
workspaces on the right hand side, as previously described for the Import button of the Define MPC
Structure By Linearization dialog box.

If you select the Use selected operating point to update nominal values as well option, the
nominal values of all the controllers in the Controllers workspace of the app are updated using this
operating point signal values.

If you select an option that generates multiple operating points for linearization (see “Specifying
Operating Points” on page 2-38), the app linearizes the model at all the specified operating points.
The linearized plants are added in the Plants workspace in the same order in which their
corresponding operating points are defined. If you choose to update the nominal values, the app uses
the signal values from the first operating point.

Specifying Operating Points
In the Simulink Operating Point section of either the Define MPC Structure By Linearization dialog
box or the Linearize Simulink Model dialog box, in the drop-down list, you can select or create
operating points for model linearization. For more information on finding steady-state operating
points, see “About Operating Points” (Simulink Control Design) and “Compute Steady-State Operating
Points from Specifications” (Simulink Control Design).

Select Model Initial Condition

To linearize the model using the initial conditions specified in the Simulink model as the operating
point, select Model Initial Condition.

The model initial condition is the default operating point for linearization in MPC Designer.
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Linearize at Simulation Snapshot Times

To linearize the model at specified simulation snapshot times, select Linearize at. Linearizing at
snapshot times is useful when you know that your model reaches an equilibrium state after a certain
simulation time.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
one or more simulation snapshot times. Enter multiple snapshot times as a vector.

Click OK.

If you enter multiple snapshot times, and you previously selected Linearize at (and clicked on the
Import button) from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the Simulink model
using only the first snapshot time. The nominal values of the MPC controller are defined using the
input/output signal values for this snapshot.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the specified
snapshot times. The linearized plant models are added to the Data Browser in the order specified
in the snapshot time array. If you selected the Use selected operating point to update nominal
values as well option, the nominal values are set using the input/output signal values from the
first snapshot.

Compute Steady-State Operating Point

To compute a steady-state operating point using numerical optimization methods to meet your
specifications, select Trim Model from the Create list.
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In the Trim the model dialog box, enter the specifications for the steady-state values at which you
want to find an operating point. You can specify values for states, input signals, and output signals.

Click Start Trimming.

The Trim progress viewer window opens up showing the optimization progress towards finding a
point in the state-input space of the model with the characteristics specified in the States, Inputs,
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and Outputs tabs. After the optimization process terminates, close the trim progress window as well
as the Trim the model dialog box.

MPC Designer creates an operating point for the given specifications. The computed operating point
is added to the Simulink Operating Point drop-down list and is selected.

For examples showing how to specify the conditions for a steady-state operating point search, see
“Compute Steady-State Operating Points from Specifications” (Simulink Control Design).

Compute Operating Point at Simulation Snapshot Time

To compute operating points using simulation snapshots, select Take Simulation Snapshot.
Linearizing the model using operating points computed from simulation snapshots is especially useful
when you know that your model reaches an equilibrium state after a certain simulation time.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
one or more simulation snapshot times. Enter multiple snapshot times as a vector.

Click Take Snapshots.

MPC Designer simulates the Simulink model. At each snapshot time, the current state of the model
is used to create an operating point, which is added to the drop-down list and selected.

If you enter multiple snapshot times, the operating points are stored together as an array. If you
previously selected Take Simulation Snapshot from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first operating point in the array. The nominal values of the MPC controller are defined using
the input/output signal values for this operating point.
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• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the operating
points in the array. The linearized plant models are added to the Data Browser in the same order
as the operating point array.

Select Existing Operating Point

Under Existing Operating Points, select a previously defined operating point at which to linearize
the Simulink model. This option is available if one or more previously created operating points are
available in the drop-down list.

If the selected operating point represents an operating point array created using multiple snapshot
times, and you previously selected an operating point from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first operating point in the array. The nominal values of the MPC controller are defined using
the input/output signal values for this operating point.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the operating
points in the array. The linearized plant models are added to the Data Browser in the same order
as the operating point array.

Select Multiple Operating Points

To linearize the Simulink model at multiple existing operating points, select Linearize at Multiple
Points. This option is available if more than one previously created operating points are in the drop-
down list.
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In the Specify multiple operating points dialog box, select the operating points at which to linearize
the model.

To change the operating point order, click an operating point in the list and click Up or Down to
move the highlighted operating point within the list.

Click OK.

If you previously selected Linearize at Multiple Points and then clicked Import from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first specified operating point. The nominal values of the MPC controller are defined using the
input/output signal values for this operating point.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the specified
operating points. The linearized plant models are added to the Data Browser in the order
specified in the Specify multiple operating points dialog box.
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View/Edit Operating Point

To view or edit the selected operating point, click the Edit button.

In the Edit dialog box, if you created the selected operating point from a simulation snapshot, you can
edit the operating point values.

If the selected operating point represents an operating point array, in the Select Operating Point
drop-down list, select an operating point to view.

If you obtained the operating point by trimming the model, you can only view the operating point
values.
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To set the Simulink model initial conditions to the states in the operating point, click Initialize
model. You can then simulate the model at the specified operating point.

When setting the model initial conditions, MPC Designer exports the operating point to the MATLAB
workspace. Also, in the Simulink Configuration Parameters dialog box, in the Data Import/Export
section, it selects the Input and Initial state parameters and configures them to use the states and
inputs in the exported operating point.

To reset the model initial conditions, for example if you delete the exported operating point, clear the
Input and Initial state parameters.

Connect Measured Disturbances for Linearization
If your Simulink model has measured disturbance signals, connect them to the corresponding plant
input ports and to the md port of the MPC Controller block. If you have multiple measured
disturbances, connect them to the MPC Controller using a vector signal. As discussed in “Define MPC
Structure By Linearization” on page 2-31, MPC Designer automatically detects the measured
disturbances connected to the MPC Controller block and sets them as plant inputs for linearization.

Since the measured disturbances connected to the md port are selected as linearization inputs, you
must connect the plant measured disturbance input ports to the selected signal line, as shown in the
following diagram.
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Correct MD Connection

If you connect the plant measured disturbance input ports to the corresponding signals before the
Mux block, as shown in the following diagram, there is no linearization path from the signals at the
md port to the plant. As a result, when you linearize the plant using MPC Designer, the measured
disturbance channels linearize to zero.

Incorrect MD Connection

See Also
MPC Designer
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Related Examples
• “Linearize Simulink Models” on page 2-21
• “Design MPC Controller in Simulink” on page 3-31
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Identify Plant from Data
When designing a model predictive controller, you can specify the internal predictive plant model
using a linear identified model. You use System Identification Toolbox software to estimate a linear
plant model in one of these forms:

• State-space model — idss
• Transfer function model — idtf
• Polynomial model — idpoly
• Process model — idproc
• Grey-box model — idgrey

You can estimate the plant model programmatically at the command line or interactively using the
System Identification app.

Identify Plant from Data at the Command Line
This example shows how to identify a plant model at the command line. For information on identifying
models using the System Identification app, see “Identify Linear Models Using System Identification
App” (System Identification Toolbox).

Load the measured input/output data.

load plantIO

This command imports the plant input signal, u, plant output signal, y, and sample time, Ts to the
MATLAB® workspace.

Create an iddata object from the input and output data.

mydata = iddata(y,u,Ts);

You can optionally assign channel names and units for the input and output signals.

mydata.InputName = 'Voltage';
mydata.InputUnit = 'V';
mydata.OutputName = 'Position';
mydata.OutputUnit = 'cm';

Typically, you must preprocess identification I/O data before estimating a model. For this example,
remove the offsets from the input and output signals by detrending the data.

mydatad = detrend(mydata);

You can also remove offsets by creating an ssestOptions object and specifying the InputOffset
and OutputOffset options.

For this example, estimate a second-order, linear state-space model using the detrended data. To
estimate a discrete-time model, specify the sample time as Ts.

ss1 = ssest(mydatad,2,'Ts',Ts)

ss1 =
  Discrete-time identified state-space model:
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    x(t+Ts) = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2
   x1   0.8942  -0.1575
   x2   0.1961   0.7616
 
  B = 
         Voltage
   x1  6.008e-05
   x2   -0.01219
 
  C = 
                  x1       x2
   Position    38.24  -0.3835
 
  D = 
             Voltage
   Position        0
 
  K = 
       Position
   x1   0.03572
   x2    0.0223
 
Sample time: 0.1 seconds
  
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 10
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using SSEST on time domain data "mydatad".
Fit to estimation data: 89.85% (prediction focus)   
FPE: 0.0156, MSE: 0.01541                           

You can use this identified plant as the internal prediction model for your MPC controller. When you
do so, the controller converts the identified model to a discrete-time, state-space model.

By default, the MPC controller discards any unmeasured noise components from your identified
model. To configure noise channels as unmeasured disturbances, you must first create an augmented
state-space model from your identified model. For example:

ss2 = ss(ss1,'augmented')

ss2 =
 
  A = 
            x1       x2
   x1   0.8942  -0.1575
   x2   0.1961   0.7616
 
  B = 
          Voltage  v@Position
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   x1   6.008e-05    0.004448
   x2    -0.01219    0.002777
 
  C = 
                  x1       x2
   Position    38.24  -0.3835
 
  D = 
                Voltage  v@Position
   Position           0      0.1245
 
Input groups:           
      Name      Channels
    Measured       1    
     Noise         2    
                        
Sample time: 0.1 seconds
Discrete-time state-space model.

This command creates a state-space model, ss2, with two input groups, Measured and Noise, for
the measured and noise inputs respectively. When you import the augmented model into your MPC
controller, channels in the Noise input group are defined as unmeasured disturbances.

Working with Impulse-Response Models
You can use System Identification Toolbox software to estimate finite step-response or finite impulse-
response (FIR) plant models using measured data. Such models, also known as nonparametric
models, are easy to determine from plant data ([1] and [2]) and have intuitive appeal.

Use the impulseest function to estimate an FIR model from measured data. This function generates
the FIR coefficients encapsulated as an idtf object; that is, a transfer function model with only
numerator coefficients. impulseest is especially effective in situations where the input signal used
for identification has low excitation levels. To design a model predictive controller for this plant, you
can convert the identified FIR plant model to a numeric LTI model. However, this conversion usually
yields a high-order plant, which can degrade the controller design. For example, the numerical
precision issues with high-order plants can affect estimator design. This result is particularly an issue
for MIMO systems.

Model predictive controllers work best with low-order parametric models. Therefore, to design a
model predictive controller using measured plant data, you can:

• Estimate a low-order parametric model using a parametric estimator, such as ssest.
• Initially identify a nonparametric model using impulseest, and then estimate a low-order

parametric model from the response of the nonparametric model. For an example, see [3].
• Initially identify a nonparametric model using impulseest, and then convert the FIR model to a

state-space model using idss. You can then reduce the order of the state-space model using
balred. This approach is similar to the method used by ssregest.

References
[1] Cutler, C., and F. Yocum, "Experience with the DMC inverse for identification," Chemical Process

Control — CPC IV (Y. Arkun and W. H. Ray, eds.), CACHE, 1991.
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[2] Ricker, N. L., "The use of bias least-squares estimators for parameters in discrete-time pulse
response models," Ind. Eng. Chem. Res., Vol. 27, pp. 343, 1988.

[3] Wang, L., P. Gawthrop, C. Chessari, T. Podsiadly, and A. Giles, "Indirect approach to continuous
time system identification of food extruder," J. Process Control, Vol. 14, Number 6, pp. 603–
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See Also
Apps
System Identification

Functions
iddata | detrend | ssest

More About
• “Handling Offsets and Trends in Data” (System Identification Toolbox)
• “Identify Linear Models Using System Identification App” (System Identification Toolbox)
• “Design MPC Controller for Identified Plant Model”
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Design MPC Controllers

• “Design Controller Using MPC Designer” on page 3-2
• “Design MPC Controller at the Command Line” on page 3-19
• “Design MPC Controller in Simulink” on page 3-31
• “Model Predictive Control of a Single-Input-Single-Output Plant” on page 3-50
• “Model Predictive Control of Multi-Input Single-Output Plant” on page 3-54
• “Model Predictive Control of a Multi-Input Multi-Output Nonlinear Plant” on page 3-91
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Design Controller Using MPC Designer
This example shows how to design a model predictive controller for a continuous stirred-tank reactor
(CSTR) using MPC Designer.

CSTR Model

The linearized model of a Continuously Stirred Tank Reactor (CSTR) is shown in “CSTR Model” on
page 2-7. In the model, the first two state variables are the concentration of reagent (here referred to
as CA and measured in kmol/m3) and the temperature of the reactor (here referred to as T, measured
in K), while the first two inputs are the coolant temperature (Tc, measured in K, used to control the
plant), and the inflow feed reagent concentration CAin

 measured in kmol/m3, (often considered as
unmeasured disturbance).

For this example, the coolant temperature has a limited range of ±10 degrees from its nominal value
and a limited rate of change of ±2 degrees per second.

Create a state-space model of a CSTR system.

A = [   -5  -0.3427;
     47.68    2.785];
B = [    0   1
       0.3   0];
C = flipud(eye(2));
D = zeros(2);
CSTR = ss(A,B,C,D);

Import Plant and Define MPC Structure

mpcDesigner

3 Design MPC Controllers

3-2



On the MPC Designer tab, in the Structure section, click MPC Structure.

In the Define MPC Structure By Importing dialog box, in the Select a plant model or an MPC
controller from MATLAB workspace table, select the CSTR model.

Since CSTR is a stable, continuous-time LTI system, MPC Designer sets the controller sample time to
0.1 Tr, where Tr is the average rise time of CSTR. For this example, in the Specify MPC controller
sample time field, enter a sample time of 0.5 seconds.

By default, all plant inputs are defined as manipulated variables and all plant outputs as measured
outputs. In the Assign plant i/o channels section, assign the input and output channel indices such
that:

• The first input, coolant temperature, is a manipulated variable.
• The second input, feed concentration, is an unmeasured disturbance.
• The first output, reactor temperature, is a measured output.
• The second output, reactant concentration, is an unmeasured output.
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Click Import.

The app imports the CSTR plant to the Data Browser. The following are also added to the Data
Browser:

• mpc1 — Default MPC controller created using CSTR as its internal model.
• scenario1 — Default simulation scenario.

The app runs the default simulation scenario and updates the Input Response and Output
Response plots. The closed loop system is able to track the desired measured output successfully,
while this is not the case for the unmeasured output. This behavior is expected as the plant has only
one manipulated variable.

Once you define the MPC structure, you cannot change it within the current MPC Designer session.
To use a different channel configuration, start a new session of the app.

Define Input and Output Channel Attributes

On the MPC Designer tab, select I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Name column, specify a meaningful
name for each input and output channel.

In the Unit column, optionally specify the units for each channel.
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Since the state-space model is defined using deviations from the nominal operating point, keep the
Nominal Value for each input and output channel to 0.

Keep the Scale Factor for each channel at the default value of 1.

Click OK.

The Input Response and Output Response plot labels update to reflect the new signal names and
units.

Configure Simulation Scenario

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, set the Simulation duration to 20 seconds.

In the Reference Signals table, in the first row, specify a step Size of 2 and a Time of 5.

In the Signal column, in the second row, select a Constant reference to hold the concentration
setpoint at its nominal value, defined in the Input and Output Channel Specifications dialog box (in
this case the nominal value is zero).
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The default scenario is configured to simulate a step change of 2 degrees Kelvin in the reference
reactor temperature, T, at a time of 5 seconds.

Click OK.

The response plots update to reflect the new simulation scenario configuration. The reference value
for CA is no longer a step but a constant equal to zero.

In the Scenarios section in the lower left part of MPC Designer, click scenario1. Click
scenario1 a second time, and rename the scenario to stepT.
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Configure Controller Horizons

On the Tuning tab, in the Horizons section, specify a Prediction horizon of 15 and a Control
horizon of 3.
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The response plots update to reflect the new horizons. The Input Response plot shows that the
control actions violate the required constraint on the rate of change for the coolant temperature.

Define Input Constraints

In the Design section, click Constraints.

In the Constraints dialog box, in the Input and Output Constraints section, in the Inputs row,
enter the coolant temperature upper and lower bounds in the Min and Max columns respectively.

Specify the rate of change limits in the RateMin and RateMax columns.
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Click OK.
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The Input Response plot shows the constrained manipulated variable control actions.

Specify Controller Tuning Weights

On the Tuning tab, in the Design section, click Weights.

In the Input Weights table, increase the manipulated variable (MV) Rate Weight to 0.3. Increasing
the MV rate weight penalizes large MV changes in the controller optimization cost function.

In the Output Weights table, keep the default Weight values. By default, all unmeasured outputs
have zero weights.

Since there is only one manipulated variable, if the controller tries to hold both outputs at specific
setpoints, one or both outputs will exhibit steady-state error in their responses. Since the controller
ignores setpoints for outputs with zero weight, setting the concentration output weight to zero allows
reactor temperature setpoint tracking with zero steady-state error.

Click OK.
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The Input Response plot shows the more conservative control actions, which result in a slower
Output Response.

Eliminate Output Overshoot

Suppose the application demands zero overshoot in the output response. On the Performance
Tuning tab, drag the Closed-Loop Performance slider to the left until the Output Response has
no overshoot. Moving this slider to the left simultaneously increases the manipulated variable rate
weight of the controller and decreases the output variable weight, producing a more robust
controller.
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When you adjust the controller tuning weights using the Closed-Loop Performance slider, MPC
Designer does not change the weights you specified in the Weights dialog box. Instead, the slider
controls an adjustment factor, which is used with the user-specified weights to define the actual
controller weights.

This factor is 1 when the slider is centered; its value decreases as the slider moves left and increases
as the slider moves right. The weighting factor multiplies the manipulated variable and output
variable weights and divides the manipulated variable rate weights from the Weights dialog box.

To view the actual controller weights, export the controller to the MATLAB workspace, and view the
Weights property of the exported controller object.

Test Controller Disturbance Rejection

In a process control application, disturbance rejection is often more important than setpoint tracking.
Simulate the controller response to a step change in the feed concentration unmeasured disturbance.

On the MPC Designer tab, in the Scenario section, click Plot Scenario > New Scenario.

In the Simulation Scenario dialog box, set the Simulation duration to 20 seconds.

In the Reference Signals table, in the first row, in the Signal drop-down list, select Step, then
specify a step Size of 2, and a Time of 5. In the Signal column, in the second row, keep a Constant
reference to hold the concentration setpoint at its nominal value.
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In the Unmeasured Disturbances row, in the Signal drop-down list, select Step. then specify a
step Size of 0.2 and a Time of 5.

Click OK.

The app adds new scenario to the Data Browser and creates new corresponding Input Response
and Output Response plots.

In the Data Browser, in the Scenarios section, rename NewScenario to distReject.
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As you can see from the Output Response plots, the closed-loop system is still able to reach the
desired reactor temperature. In this case, the required control actions, combined with the input
disturbance, cause a steady-state decrease in the output concentration, CA of 0.1 kmol/m3.

Specify Concentration Output Constraint

Previously, you defined the controller tuning weights to achieve the primary control objective of
tracking the reactor temperature setpoint with zero steady-state error. Doing so enables the
unmeasured reactor concentration to vary freely. Suppose that unwanted reactions occur once the
reactor concentration drops below 0.05 kmol/m3 with respect to its nominal value. To constrain the
reactor concentration, specify an output constraint.

On the Tuning tab, in the Design section, click Constraints.

In the Constraints dialog box, in the Input and Output Constraints sections, in second row of the
Outputs table, specify a Min unmeasured output (UO) value of -0.05.

By default, all output constraints are soft, meaning that their MinECR and MaxECR values are
greater than zero. To soften the unmeasured output (UO) constraint further, increase its MaxECR
value.
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Click OK.
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In the Output Response plots, the reactor concentration, CA, stabilizes at -0.05 kmol/m3 after 10
seconds. Since there is only one manipulated variable, the controller makes a compromise between
the two competing control objectives: Temperature tracking and constraint satisfaction. A softer
output constraint enables the controller to sacrifice the constraint requirement more to improve the
temperature tracking.

Since the output constraint is soft, the controller maintains some level of temperature control by
allowing small concentration constraint violations. In general, depending on your application
requirements, you can experiment with different constraint settings to achieve an acceptable control
objective compromise.

Export Controller

In the Tuning tab, in the Analysis section, click Export Controller  to save the tuned controller,
mpc1, to the MATLAB workspace.

Delete Plants, Controllers, and Scenarios

To delete a plant, controller, or scenario, in the Data Browser, right-click the item you want to
delete, and select Delete.

You cannot delete the current controller. Also, you cannot delete a plant or scenario if it is the only
listed plant or scenario.
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If a plant is used by any controller or scenario, you cannot delete the plant.

To delete multiple plants, controllers, or scenarios, hold Shift and click each item that you want to
delete.

References
[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition,

Wiley, 2004, pp. 34–36 and 94–95.

See Also
MPC Designer

More About
• “Specify Constraints”
• “Tune Weights”
• “Design MPC Controller in Simulink” on page 3-31
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Design MPC Controller at the Command Line
This example shows how to create and test a model predictive controller from the command line.

Define Plant Model

This example uses the plant model described in “Design Controller Using MPC Designer” on page 3-
2. Create a state-space model of the plant and set some optional model properties such as names and
units of input, state, and output variables.

% continuous-time state-space matrices, with temperature as first output
A = [   -5  -0.3427;
     47.68    2.785];
B = [    0   1
       0.3   0];
C = [0 1;
     1 0];
D = zeros(2,2);

% create state space plant model
CSTR = ss(A,B,C,D);

% set names
CSTR.InputName = {'T_c', 'C_A_f'};  % set names of input variables
CSTR.OutputName = {'T', 'C_A'};     % set names of output variables
CSTR.StateName = {'C_A', 'T'};      % set names of state variables

% set units
CSTR.InputUnit = {'deg K', 'kmol/m^3'};     % set units of input variables
CSTR.OutputUnit = {'deg K', 'kmol/m^3'};    % set units of output variables
CSTR.StateUnit = {'kmol/m^3', 'deg K'};     % set units of state variables

Note that this model is derived from the linearization of a nonlinear model around an operating point.
Therefore, the values of the linear model input and output signals represent deviations with respect
to their operating-point values in the nonlinear model. For more information, see “Linearization Using
MATLAB Code” on page 2-21.

Assign input and output signals to different MPC categories.

The coolant temperature is the manipulated variable (MV), the inflow reagent concentration is an
unmeasured disturbance input (UD), the reactor temperature is the measured output (MO), and the
reagent concentration is an unmeasured output (UO).

CSTR=setmpcsignals(CSTR,'MV',1,'UD',2,'MO',1,'UO',2);

Display Basic Plant Properties and Plot Step Response

Use damp to display damping ratio, natural frequency, and time constant of the poles of the linear
plant model.

damp(CSTR)

                                                                       
         Pole              Damping       Frequency      Time Constant  
                                       (rad/seconds)      (seconds)    
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 -1.11e+00 + 1.09e+00i     7.13e-01       1.55e+00         9.03e-01    
 -1.11e+00 - 1.09e+00i     7.13e-01       1.55e+00         9.03e-01    

Plot the open-loop step response.

step(CSTR)

Given the plant nominal stability, the time constant of about 1 second suggests a sample time not
larger than of 0.5 seconds. With a sampling time of 0.5 seconds, a prediction horizon of 10 steps can
cover the whole settling time of the open-loop plant, so you can use both parameters an initial guess.
A shorter sample time implies less available time for the control computation. A longer horizon (more
steps) implies a larger number of optimization variables, and therefore a more computationally
demanding problem to be solved in the available time step.

Create Controller

To improve the clarity of the example, suppress Command Window messages from the MPC
controller.

old_status = mpcverbosity('off');

Create a model predictive controller with a control interval, or sample time, of 0.5 seconds, and with
all other properties at their default values, including a prediction horizon of 10 steps and a control
horizon of 2 steps.

mpcobj = mpc(CSTR,0.5)
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MPC object (created on 26-Feb-2022 19:47:50):
---------------------------------------------
Sampling time:      0.5 (seconds)
Prediction Horizon: 10
Control Horizon:    2

Plant Model:        
                                      --------------
      1  manipulated variable(s)   -->|  2 states  |
                                      |            |-->  1 measured output(s)
      0  measured disturbance(s)   -->|  2 inputs  |
                                      |            |-->  1 unmeasured output(s)
      1  unmeasured disturbance(s) -->|  2 outputs |
                                      --------------
Indices:
  (input vector)    Manipulated variables: [1 ]
                  Unmeasured disturbances: [2 ]
  (output vector)        Measured outputs: [1 ]
                       Unmeasured outputs: [2 ]

Disturbance and Noise Models:
        Output disturbance model: default (type "getoutdist(mpcobj)" for details)
         Input disturbance model: default (type "getindist(mpcobj)" for details)
         Measurement noise model: default (unity gain after scaling)

Weights:
        ManipulatedVariables: 0
    ManipulatedVariablesRate: 0.1000
             OutputVariables: [1 0]
                         ECR: 100000

State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Unconstrained

View and Modify Controller Properties

Display a list of the controller properties and their current values.

get(mpcobj)

                          Ts: 0.5                 
       PredictionHorizon (P): 10                  
          ControlHorizon (C): 2                   
                       Model: [1x1 struct]        
   ManipulatedVariables (MV): [1x1 struct]        
        OutputVariables (OV): [1x2 struct]        
   DisturbanceVariables (DV): [1x1 struct]        
                 Weights (W): [1x1 struct]        
                   Optimizer: [1x1 struct]        
                       Notes: {}                  
                    UserData: []                  
                     History: 26-Feb-2022 19:47:50

The displayed History value will be different for your controller, since it depends on when the
controller was created. For a description of the editable properties of an MPC controller, enter
mpcprops at the command line.
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Use dot notation to modify these properties. For example, change the prediction horizon to 15.

mpcobj.PredictionHorizon = 15;

Some property names have aliases. For example you can use the alias MV instead of
ManipulatedVariables. Also, many of the controller properties are structures containing
additional fields. Use the dot notation to view and modify these field values. For example, since by
default, the controller has no constraints on manipulated variables and output variables, you can view
and modify these constraints using dot notation.

Set constraints for the controller manipulated variable.

mpcobj.MV.Min = -10;    % K
mpcobj.MV.Max = 10;     % K
mpcobj.MV.RateMin = -1; % K/step
mpcobj.MV.RateMax = 1;  % K/step

You can abbreviate property names provided that the abbreviation is unambiguous. You can also view
and modify the controller tuning weights. For example, modify the weights for the manipulated
variable rate and the output variables.

mpcobj.W.ManipulatedVariablesRate = 0.3;
mpcobj.W.OutputVariables = [1 0];

You can also define time-varying constraints and weights over the prediction horizon, which shifts at
each time step. For example, to force the manipulated variable to change more slowly towards the
end of the prediction horizon, enter:

MPCobj.MV.RateMin = [-2; -1.5; -1; -1; -1; -0.5];

MPCobj.MV.RateMax = [2; 1.5; 1; 1; 1; 0.5];

The -0.5 and 0.5 values are used for the fourth step and beyond.

Similarly, you can specify different output variable weights for each step of the prediction horizon.
For example, enter:

MPCobj.W.OutputVariables = [0.1 0; 0.2 0; 0.5 0; 1 0];

You can also modify the disturbance rejection characteristics of the controller. See setEstimator,
setindist, and setoutdist for more information.

Review Controller Design

Generate a report on potential run-time stability and performance issues.

review(mpcobj)
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In this example, the review command found two potential issues with the design. The first warning
is caused by the fact that the weight on the C_A output error is zero. The second warning is caused
by the fact that there are hard constraints on both MV and MVRate.

You can scroll down to see more information about each individual test result.

Perform Linear Simulations

Use the sim function to run a linear simulation of the system. For example, simulate the closed-loop
response of MPCobj for 26 control intervals. Starting from the second step, specify setpoints of 2 and
0 for the reactor temperature (first output) and the reagent concentration (second output)
respectively. Note that the setpoint for the concentration is ignored because the tuning weight for the
second output is zero.

T = 26;
r = [0 0;
     2 0];
sim(mpcobj,T,r)
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You can modify the simulation options using mpcsimopt. For example, run a simulation with the
manipulated variable constraints turned off.

mpcopts = mpcsimopt;
mpcopts.Constraints = 'off';
sim(mpcobj,T,r,mpcopts)
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The first move of the manipulated variable now exceeds the specified 1-unit rate constraint.

You can also perform a simulation with a plant/model mismatch. For example, define a plant with 50%
larger gains than those in the model used by the controller, and a time delay of 0.1 seconds.

mpcopts.Model = tf(1.5,1,'InputDelay',0.1)*CSTR;
sim(mpcobj,T,r,mpcopts)
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The plant/model mismatch degrades the controller performance, as you can tell from the oscillatory
behavior of the closed loop responses. Degradation can be severe and must be tested on a case-by-
case basis.

Other simulation options include the addition of a specified noise sequence to the manipulated
variables or measured outputs, open-loop simulations, and a look-ahead option for better setpoint
tracking or measured disturbance rejection.

Store and Plot Simulation Results

Simulate the system storing the simulation results in the MATLAB Workspace.

[y,t,u] = sim(mpcobj,T,r);

This syntax suppresses automatic plotting and returns the simulation results in the y, t and u
variables. You can use the results for other purposes, including custom plotting. For example, plot the
manipulated variable and both output variables in the same figure.

figure
subplot(2,1,1)
plot(t,u)
title('Inputs')
legend('T_c')
subplot(2,1,2)
plot(t,y)
title('Outputs')
legend('T','C_A')
xlabel('Time')
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Restore the mpcverbosity setting.

mpcverbosity(old_status);

See Also
Functions
review | sim

Objects
mpc

Apps
MPC Designer

Blocks
MPC Controller

More About
• “MPC Prediction Models” on page 2-3
• “Design Controller Using MPC Designer” on page 3-2
• “Design MPC Controller in Simulink” on page 3-31
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Design MPC Controller in Simulink
This example shows how to design a model predictive controller for a continuous stirred-tank reactor
(CSTR) in Simulink using MPC Designer.

This example requires Simulink Control Design software to define the MPC structure by linearizing a
nonlinear Simulink model.

If you do not have Simulink Control Design software, you must first create an mpc object in the
MATLAB workspace. For more information, see “Design Controller Using MPC Designer” on page 3-2
and “Design MPC Controller at the Command Line” on page 3-19.

CSTR Model

The nonlinear model of a Continuously Stirred Tank Reactor (CSTR) is described in “CSTR Model” on
page 2-7. In the model, the inputs are arranged in the vector u(t) and are as follows.

• u1 — CAf, the concentration of reagent A in the inlet feed stream, measured in kmol/m3

• u2 — Tf, the temperature of the inlet feed stream, measured in K
• u3 — Tc, the temperature of the jacket coolant, measured in K

while the state variables are arranged in the vector x(t).

• x1 — CA, the concentration of reagent A in the reactor, measured in kmol/m3

• x2 — T, the temperature in the reactor, measured in K

The control objective is to maintain the residual concentration, CA, at its nominal setpoint by
adjusting the coolant temperature, Tc. Changes in the feed concentration, CAf, and feed temperature,
Tf, cause disturbances in the CSTR reaction.

The reactor temperature, T, is usually measured. However, for this example, ignore the reactor
temperature, and assume that the residual concentration is measured directly.

Open the Simulink model.

open_system('CSTR_ClosedLoop')
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Connect Measured Disturbance Signal

In the Simulink model window, double-click the MPC Controller block.

In the Block Parameters dialog box, on the General tab, select the Measured disturbance (md)
check box.

Click Apply to add the md input port to the controller block.

In the Simulink model window, connect the Feed Temperature block output to the md input port.
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Linearize Simulink Model

In this example, you linearize the Simulink model from within MPC Designer, which requires
Simulink Control Design software. For more information, see “Linearize Simulink Models Using MPC
Designer” on page 2-30.

If you do not have Simulink Control Design software, you must first create an mpc object in the
MATLAB workspace and specify that controller object in the MPC Controller block.

To open MPC Designer, open the MPC Controller block and click Design.

In MPC Designer, on the MPC Designer tab, in the Structure section, click MPC Structure.

In the Define MPC Structure By Linearization dialog box, in the Controller Sample Time section,
specify a sample time of 0.1.

In the MPC Structure section, click Change I/O Sizes to add the unmeasured disturbance and
measured disturbance signal dimensions.

In the MPC Block Signal Sizes dialog box, specify the number of input/output channels of each type.
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Click OK.

In the Define MPC Structure By Linearization dialog box, in the Simulink Signals for Plant Inputs
section, the app adds a row for Unmeasured Disturbances (UD).
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The manipulated variable, measured disturbance, and measured output are already assigned to their
respective Simulink signal lines, which are connected to the MPC Controller block.

In the Simulink Signals for Plant Inputs section, select the Unmeasured Disturbances (UD)
row, and click Select Signals.

In the Simulink model window, click the output signal from the Feed Concentration block.

The signal is highlighted and its block path is added to the Select Signal for MPC Input Channels
dialog box.

In the Select Signals for MPC Input Channels dialog box, click OK.

In the Define MPC Structure By Linearization dialog box, in the Simulink Signals for Plant Inputs
table, the Block Path for the unmeasured disturbance signal is updated.

In this example, you linearize the Simulink model at a steady-state equilibrium operating point where
the residual concentration is 2 kmol/m3. To compute such an operating point, add the CA signal as a
trim output constraint, and specify its target constraint value.

In the Simulink model window, select the signal line connected to CA output port of the CSTR block.
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On the Apps tab, click Linearization Manager. Then, on the Linearization tab, in the Insert
Analysis Points gallery, under the Trim section, select Trim Output Constraint.

The CA signal can now be used to define output specifications for calculating a model steady-state
operating point.

In the Define MPC Structure By Linearization dialog box, in the Simulink Operating Point section,
in the Create drop-down list, select Trim Model.

In the Trim the model dialog box, on the Outputs tab, check the box in the Known column for
Channel - 1 and specify a Value of 2.
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This setting constrains the value of the output signal during the operating point search to a known
value.

Click Start Trimming.

The Trim progress viewer window opens up showing the optimization progress towards finding a
point in the state-input space of the model with the characteristics specified in the States, Inputs,
and Outputs tabs. After the optimization process terminates, close the trim progress window as well
as the Trim the model dialog box.

In the Define MPC Structure By Linearization dialog box, in the Simulink Operating Point section,
the computed operating point, op_trim1 (MPC_OP_Workspace), is added to the drop-down list and
selected.

In the Simulink Operating Point section, click Edit.
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In the Edit dialog box, on the State tab, in the Actual dx column, the near-zero derivative values
indicate that the computed operating point is at steady-state.

To set the initial states of the Simulink model to the operating point values in the Actual Values
column, click Initialize model. Doing so enables you to later simulate the Simulink model at the
computed operating point rather than at the default model initial conditions.

In the Initialize Model dialog box, click OK.

When setting the model initial conditions, MPC Designer exports the operating point to the MATLAB
workspace. Also, in the Simulink Configuration Parameters dialog box, in the Data Import/Export
section, it selects the Input and Initial state parameters and configures them to use the states and
inputs in the exported operating point.

To reset the model initial conditions, for example if you delete the exported operating point, clear the
Input and Initial state parameters.

Close the Edit dialog box.

In the Define MPC Structure By Linearization dialog box, linearize the Simulink model and import the
linearized model in MPC Designer by clicking Import.

In the data browser section on the left hand side, the app adds the following items.

• Linearized and discretized plant model plant
• Default MPC controller mpc1 created using the linearized plant as an internal prediction model
• Default simulation scenario scenario1
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Define Input/Output Channel Attributes

On the MPC Designer tab, in the Structure section, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Name column, specify meaningful
names for each input and output channel.

In the Unit column, specify appropriate units for each signal.
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The Nominal Value for each signal is the corresponding steady-state value at the computed
operating point.

Click OK.

Define Disturbance Rejection Simulation Scenarios

The primary objective of the controller is to hold the residual concentration CA at the nominal value of
2 kmol/m3. To do so, the controller must reject both measured and unmeasured disturbances.

On the MPC Designer tab, in the Scenario section, select Edit Scenario > scenario1.

In the Simulation Scenario dialog box, in the Reference Signals (setpoints for all outputs) table,
in the Signal drop-down list select Constant to hold the output setpoint at its nominal value.

In the Measured Disturbances table, in the Signal drop-down list, select Step.

Specify a step Size of 10 and a step Time of 0.
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Click OK.

In the Data Browser, under Scenarios, click scenario1. Click scenario1 a second time, and
rename it MD_reject.

In the Scenario section, click Plot Scenario > New Scenario.
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In the Simulation Scenario dialog box, in the Unmeasured Disturbances table, in the Signal drop-
down list, select Step.

Specify a step Size of 1 and a step Time of 0.

Click OK.

In the Data Browser, under Scenarios, rename NewScenario to UD_reject.

Arrange Output Response Plots

To make viewing the tuning results easier, arrange the plot area to display the Output Response plots
for both scenarios at the same time.

Right click on the input plots tab bar and select Close Input Plots.

The plot display area changes to display only the output plots.

Right click on the output plots tab bar and select Tile All > Top/Bottom.
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The plot display area changes to display MD_reject: Output tab is in the upper plot area and the
UD_reject: Output plot is in the lower plot area.
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Tune Controller Performance

On the Tuning tab, in the Horizon section, specify a Prediction horizon of 20 and a Control
horizon of 5.

The Output Response plots update based on the new horizon values.

Use the default controller constraint and weight configurations.

In the Performance Tuning section, drag the Closed-Loop Performance slider to the right, which
leads to tighter control of outputs and more aggressive control moves. Drag the slider until the
MD_reject: Output response reaches steady state in less than 3 seconds.
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Drag the State Estimation slider to the right, which leads to more aggressive unmeasured
disturbance rejection. Drag the slider until the UD_reject: Output response reaches steady state in
less than 3 seconds.
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Update Simulink Model with Tuned Controller

In the Analysis section, select Export Controller > Update Block Only. The app exports tuned
controller mpc1 to the MATLAB workspace. In the Simulink model, the MPC Controller block is
updated to use the exported controller.

Simulate Unmeasured Disturbance Rejection

In the Simulink model window, on the Simulation tab, change Stop Time to 5 seconds.

The model initial conditions are set to the nominal operating point used for linearization.

To simulate a unit step in the feed concentration at time zero, open the Feed Concentration block and
increase its Constant value parameter from 10 to 11.

In the Simulink model window, open the Concentration scope and run the simulation. To scale the plot
vertical axis, click on the vertical scaling button in the scope plot toolbar.
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The output response is similar to the UD_reject response, however the settling time is around 1
second longer. The different result is due to the mismatch between the linear plant used in the MPC
Designer simulation and the nonlinear plant in the Simulink model.

Simulate Measured Disturbance Rejection

To simulate the measured disturbance rejection, first return the Feed Concentration block to its
nominal value of 10.

To simulate a step change in the feed temperature at time zero, open the Feed Temperature block and
increase its Constant value parameter from 300 to 310.

Run the simulation, and then scale the plot vertical axis.
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The output response is similar to the MD_reject response from the MPC Designer simulation.

See Also
Apps
MPC Designer

Blocks
MPC Controller

More About
• “CSTR Model” on page 2-7
• “Tune Weights”
• “Linearize Simulink Models” on page 2-21
• “Design Controller Using MPC Designer” on page 3-2
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Model Predictive Control of a Single-Input-Single-Output Plant
This example shows how to control a double integrator plant with input saturation in Simulink®.

Define the Plant Model

Define the plant model as a double integrator (the input is the manipulated variable and the output
the measured output).

plant = tf(1,[1 0 0]);

Design the MPC Controller

Create the controller object with a sampling period of 0.1 seconds, a prediction horizon of 10 steps
and a control horizon of and 3 moves.

mpcobj = mpc(plant, 0.1, 10, 3);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Because you have not specified the weights of the quadratic cost function to be minimized by the
controller, their value is assumed to be the default one (0 for the manipulated variables, 0.1 for the
manipulated variable rates, 1 for the output variables). Also, at this point the MPC problem is still
unconstrained as you have not specified any constraint yet.

Specify actuator saturation limits as constraints on the manipulated variable.

mpcobj.MV = struct('Min',-1,'Max',1);

Simulate Using Simulink

Simulink is a graphical block diagram environment for multidomain system simulation. You can
connect blocks representing dynamical systems (in this case the plant and the MPC controller) and
simulate the closed loop.

% Check that Simulink is installed, otherwise display a message and return
if ~mpcchecktoolboxinstalled('simulink')
    disp('Simulink is required to run this example.')
    return
end

Open the pre-existing Simulink model for the closed-loop simulation. The plant model is implemented
with two integrator blocks in series. The variable-step ode45 integration algorithm is used to
calculate the continuous time loop behavior. The MPC Controller block is configured to use the
workspace mpcobj object as controller. The manipulated variables and the output and reference
signal. The output signal is also saved by the To-Workspace block.

mdl = 'mpc_doubleint';
open_system(mdl)
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Simulate closed-loop control of the linear plant model in Simulink. Note that before the simulation
starts the plant model in mpcobj is converted to a discrete state space model. By default, the
controller uses as observer a Kalman filter designer assuming a white noise disturbance on each
plant output.

sim(mdl)        % you can also simulate by pressing the "Run" button.

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
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The closed-loop response shows good setpoint tracking performance, as the plant output tracks its
reference after about 2.5 seconds. As expected, the manipulated variable stays within the predefined
constraints.

Close the open Simulink model without saving any change.

bdclose(mdl)

See Also
Objects
mpc

Apps
MPC Designer

Blocks
MPC Controller

More About
• “Model Predictive Control of Multi-Input Single-Output Plant” on page 3-54
• “Model Predictive Control of a Multi-Input Multi-Output Nonlinear Plant” on page 3-91
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Model Predictive Control of Multi-Input Single-Output Plant
This example shows how to design, analyze, and simulate a model predictive controller with hard and
soft constraints for a plant with one measured output (MO) and three inputs. The inputs consist of
one manipulated variable (MV), one measured disturbance (MD), and one unmeasured disturbance
(UD). After designing a controller and analyzing its closed-loop steady-state gains, you perform
simulations with the sim command, in a for loop using mpcmove, and with Simulink®. Simulations
with model mismatches, without constraints, and in open-loop are shown. Input and output
disturbances and noise models are also treated, as well as how to change the Kalman gains of the
built-in state estimator.

Define Plant Model

Define a plant model. For this example, use continuous-time transfer functions from each input to the
output.

plantTF = tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}) % define and display tf object

plantTF =
 
  From input 1 to output:
         1
  ---------------
  s^2 + 0.5 s + 1
 
  From input 2 to output:
    1
  -----
  s + 1
 
  From input 3 to output:
           1
  -------------------
  0.7 s^2 + 0.5 s + 1
 
Continuous-time transfer function.

For this example, explicitly convert the plant to a discrete-time state-space form before passing it to
the MPC controller creation function.

The controller creation function can accept either continuous-time or discrete-time plants. During
initialization, a continuous-time plant (in any format) is automatically converted into a discrete-time
state-space model using the zero-order hold (ZOH) method. Delays, if present, are incorporated in the
state-space model.

You can convert the plant to discrete-time yourself when you need the discrete-time system matrices
for analysis or simulation (as in this example) or when you want to use a discrete-time conversion
method other than ZOH.

plantCSS = ss(plantTF);         % transfer function to continuous state space
Ts = 0.2;                       % specify a sample time of 0.2 seconds
plantDSS = c2d(plantCSS,Ts)     % convert to discrete-time state space, using ZOH

plantDSS =
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  A = 
            x1       x2       x3       x4       x5
   x1   0.8862  -0.1891        0        0        0
   x2   0.1891   0.9807        0        0        0
   x3        0        0   0.8187        0        0
   x4        0        0        0    0.841  -0.2637
   x5        0        0        0   0.1846   0.9729
 
  B = 
            u1       u2       u3
   x1   0.1891        0        0
   x2  0.01929        0        0
   x3        0   0.1813        0
   x4        0        0   0.1846
   x5        0        0  0.01899
 
  C = 
          x1     x2     x3     x4     x5
   y1      0      1      1      0  1.429
 
  D = 
       u1  u2  u3
   y1   0   0   0
 
Sample time: 0.2 seconds
Discrete-time state-space model.

By default, the software assumes that all the plant input signals are manipulated variables. To specify
the signal types, such as measured and unmeasured disturbances, use the setmpcsignals function.
In this example, the first input signal is a manipulated variable, the second is a measured
disturbance, and the third is an unmeasured disturbance. This information is stored in the plant
model plantDSS and later used by the MPC controller.

plantDSS = setmpcsignals(plantDSS,'MV',1,'MD',2,'UD',3); % specify signal types

Design MPC Controller

Create the controller object, specifying the sample time, as well as the prediction and control
horizons (10 and 3 steps, respectively).

mpcobj = mpc(plantDSS,Ts,10,3);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Since you have not specified the weights of the quadratic cost function to be minimized, the
controller uses their default values (0 for manipulated variables, 0.1 for manipulated variable rates,
and 1 for the output variables). Also, at this point the MPC problem is still unconstrained as you have
not specified any constraint yet.

Define hard constraints on the manipulated variable.

mpcobj.MV = struct('Min',0,'Max',1,'RateMin',-10,'RateMax',10);

You can use input and output disturbance models to define the dynamic characteristics of additive
input and output unmeasured disturbances. These models allow the controller to better reject such
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disturbances, if they occur at run time. By default, to be able to better reject step-like disturbances,
mpc uses an integrator as disturbance model for:

• Each unmeasured disturbance input and
• Each unmeasured disturbance acting on each measured outputs

unless doing so causes a violation of state observability.

The MPC object also has a noise model that specifies the characteristics of the additive noise that is
expected on the measured output variables. By default, this, is assumed to be a unit static gain, which
is equivalent to assuming that the controller expects the measured output variables to be affected, at
run time, by white noise (with a covariance matrix that depends on the input matrices of the whole
prediction model). For more information, see “MPC Prediction Models” on page 2-3.

Display the input disturbance model. As expected, it is a discrete-time integrator.

getindist(mpcobj)

-->The "Model.Disturbance" property is empty:
   Assuming unmeasured input disturbance #3 is integrated white noise.
   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

ans =
 
  A = 
       x1
   x1   1
 
  B = 
       UD1-wn
   x1     0.2
 
  C = 
        x1
   UD1   1
 
  D = 
        UD1-wn
   UD1       0
 
Sample time: 0.2 seconds
Discrete-time state-space model.

Display the output disturbance model.

getoutdist(mpcobj)

ans =

  Empty state-space model.

Specify the disturbance model for the unmeasured input as an integrator driven by white noise with
variance 1000.
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mpcobj.Model.Disturbance = tf(sqrt(1000),[1 0]);

Display the input disturbance model again to verify that it changed.

getindist(mpcobj)

ans =
 
  A = 
       x1
   x1   1
 
  B = 
       Noise#1
   x1      0.8
 
  C = 
           x1
   UD1  7.906
 
  D = 
        Noise#1
   UD1        0
 
Sample time: 0.2 seconds
Discrete-time state-space model.

Display the MPC controller object mpcobj to review its properties.

mpcobj

 
MPC object (created on 26-Feb-2022 20:10:47):
---------------------------------------------
Sampling time:      0.2 (seconds)
Prediction Horizon: 10
Control Horizon:    3

Plant Model:        
                                      --------------
      1  manipulated variable(s)   -->|  5 states  |
                                      |            |-->  1 measured output(s)
      1  measured disturbance(s)   -->|  3 inputs  |
                                      |            |-->  0 unmeasured output(s)
      1  unmeasured disturbance(s) -->|  1 outputs |
                                      --------------
Indices:
  (input vector)    Manipulated variables: [1 ]
                    Measured disturbances: [2 ]
                  Unmeasured disturbances: [3 ]
  (output vector)        Measured outputs: [1 ]

Disturbance and Noise Models:
        Output disturbance model: default (type "getoutdist(mpcobj)" for details)
         Input disturbance model: user specified (type "getindist(mpcobj)" for more details)
         Measurement noise model: default (unity gain after scaling)
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Weights:
        ManipulatedVariables: 0
    ManipulatedVariablesRate: 0.1000
             OutputVariables: 1
                         ECR: 100000

State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
 0 <= MV1 <= 1, -10 <= MV1/rate <= 10, MO1 is unconstrained

Examine Steady-State Offset

To examine whether the MPC controller can reject constant output disturbances and track a constant
setpoint with zero offsets in steady state, calculate the closed-loop DC gain from output disturbances
to controlled outputs using the cloffset command. This gain is also known as the steady state
output sensitivity of the closed loop.

DC = cloffset(mpcobj);
fprintf('DC gain from output disturbance to output = %5.8f (=%g) \n',DC,DC);

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
DC gain from output disturbance to output = 0.00000000 (=3.55271e-15) 

A zero gain, which is typically the result of the controller having integrators as input or output
disturbance models, means that the measured plant output tracks the desired output reference
setpoint perfectly in steady state.

Simulate Closed-Loop Response Using sim

The sim command provides a quick way to simulate an MPC controller in a closed loop with a linear
time-invariant plant when constraints and weights stay constant and you can easily and completely
specify the disturbance and reference signals ahead of time.

First, specify the simulation time and the reference and disturbance signals

Tstop = 30;                               % simulation time
Nf = round(Tstop/Ts);                     % number of simulation steps
r = ones(Nf,1);                           % output reference signal
v = [zeros(Nf/3,1);ones(2*Nf/3,1)];       % measured input disturbance signal

Run the closed-loop simulation and plot the results. The plant specified in mpcobj.Model.Plant is
used both as the plant in the closed-loop simulation and as the internal plant model used by the
controller to predict the response over the prediction horizon. The plant model is discretized or
resampled if needed, and the simulation runs in discrete time, with sample time mpcobj.Ts.

Use sim to simulate the closed-loop response to reference r and measured input disturbance v
system for Nf steps.

sim(mpcobj,Nf,r,v)      % simulate plant and controller in closed loop
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The manipulated variable hits the upper bound initially, and brings the plant output to the reference
value within a few seconds. The manipulated variable then settles at its maximum allowed value, 1.
After 10 seconds, the measured disturbance signal rises from 0 to 1, which causes the plant output to
exceed its reference value by about 30%. The manipulated variable hits the lower bound in an effort
to reject the disturbance. The controller is able to bring the plant output back to the reference value
after a few seconds, and the manipulated variable settles at its minimum value. The unmeasured
disturbance signal is always zero, because no unmeasured disturbance signal has been specified yet.

You can use a simulation options object to specify additional simulation options and additional
signals, such as noise and unmeasured disturbances, that feed into the plant but are unknown to the
controller. For this example, use a simulation option object to add an unmeasured input disturbance
signal to the manipulated variable and to add noise on the measured output signal. Create a
simulation options object with default options.

SimOptions = mpcsimopt;                       % create object

Create a disturbance signal and specify it in the simulation options object.

d = [zeros(2*Nf/3,1);-0.5*ones(Nf/3,1)];      % step disturbance
SimOptions.UnmeasuredDisturbance = d;         % unmeasured input disturbance

Specify noise signals in the simulation options object. At simulation time, the simulation function
directly adds the specified output noise to the measured output before feeding it to the controller. It
also directly adds the specified input noise to the manipulated variable (not to any disturbance
signals) before feeding it to the plant.
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SimOptions.OutputNoise=.001*(rand(Nf,1)-.5);  % output measurement noise
SimOptions.InputNoise=.05*(rand(Nf,1)-.5);    % noise on manipulated variables

You can also use the OutputNoise field of the simulation option object to specify a more general
additive output disturbance signal (such as a step) on the measured plant output.

Simulate the closed-loop system and save the results to the workspace variables y, t, u, and xp.
Saving this variables allows you to selectively plot signals in a new figure window and in any given
color and order.

[y,t,u,xp] = sim(mpcobj,Nf,r,v,SimOptions);

Plot the results.

figure                                  % create new figure

subplot(2,1,1)                          % create upper subplot
plot(0:Nf-1,y,0:Nf-1,r)                 % plot plant output and reference
title('Output')                         % add title so upper subplot
ylabel('MO1')                           % add a label to the upper y axis
grid                                    % add a grid to upper subplot

subplot(2,1,2)                          % create lower subplot
plot(0:Nf-1,u)                          % plot manipulated variable
title('Input');                         % add title so lower subplot
xlabel('Simulation Steps')              % add a label to the lower x axis
ylabel('MV1')                           % add a label to the lower y axis
grid                                    % add a grid to lower subplot
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Despite the added noise, which is especially visible on the manipulated variable plot, and despite the
measured and unmeasured disturbances starting after 50 and 100 steps, respectively, the controller
is able to achieve good tracking. The manipulated variable settles at about 1 after the initial part of
the simulation (steps from 20 to 50), at about 0 to reject the measured disturbance (steps from 70 to
100), and at about 0.5 to reject both disturbances (steps from 120 to 150).

Simulate Closed-Loop Response with Model Mismatch

Test the robustness of the MPC controller against a model mismatch. Specify the true plant that you
want to use in simulation as truePlantCSS. For this example, the denominator of each of the three
plant transfer functions has one or two coefficients that differ from the corresponding ones in the
plant defined earlier in Define Plant model section, which the MPC controller uses for prediction.

truePlantTF = tf({1,1,1},{[1 .8 1],[1 2],[.6 .6 1]})    % specify and display transfer functions
truePlantCSS = ss(truePlantTF);                         % convert to continuous state space
truePlantCSS = setmpcsignals(truePlantCSS,'MV',1,'MD',2,'UD',3); % specify signal types

truePlantTF =
 
  From input 1 to output:
         1
  ---------------
  s^2 + 0.8 s + 1
 
  From input 2 to output:
    1
  -----
  s + 2
 
  From input 3 to output:
           1
  -------------------
  0.6 s^2 + 0.6 s + 1
 
Continuous-time transfer function.

Update the simulation option object by specifying SimOptions.Model as a structure with two fields,
Plant (containing the true plant model) and Nominal (containing the operating point values for the
true plant). For this example, the nominal values for the state derivatives and the inputs are not
specified, so they are assumed to be zero, resulting in y = SimOptions.Model.Nominal.Y +
C*(x-SimOptions.Model.Nominal.X), where x and y are the state and measured output of the
plant, respectively.

% create the structure and assign the 'Plant' field
SimOptions.Model = struct('Plant',truePlantCSS);

 % create and assign the 'Nominal.Y' field
SimOptions.Model.Nominal.Y = 0.1;

% create and assign the 'Nominal.X' field
SimOptions.Model.Nominal.X = -.1*[1 1 1 1 1];

% specify the initial state of the true plant
SimOptions.PlantInitialState = [0.1 0 -0.1 0 .05];

Remove any signal that have been added to the measured output and to the manipulated variable.
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SimOptions.OutputNoise = [];            % remove output measurement noise
SimOptions.InputNoise = [];             % remove noise on manipulated variable

Run the closed-loop simulation and plot the results. Since SimOptions.Model is not empty,
SimOptions.Model.Plant is converted to discrete time (using zero order hold) and used as the
plant in the closed loop simulation, while the plant in mpcobj.Model.Plant is only used by the
controller to predict the response over the prediction horizon.

sim(mpcobj,Nf,r,v,SimOptions)           % simulate the closed loop

-->Converting model to discrete time.
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As a result of the model mismatch, some degradation in the response is visible; notably, the controller
needs a little more time to achieve tracking and the manipulated variable now settles at about 0.5 to
reject the measured disturbance (see values from 5 to 10 seconds) and settles at about 0.9 to reject
both input disturbances (from 25 to 30 seconds). Despite this degradation, the controller is still able
to track the output reference.

Simulate Open-Loop Response

You can also test the behavior of the plant and controller in open-loop, using the sim command. Set
the OpenLoop flag to on, and provide a sequence of manipulated variable values to excite the system
(the sequence is ignored if OpenLoop is set to off).

SimOptions.OpenLoop = 'on';                 % set open loop option
SimOptions.MVSignal = sin((0:Nf-1)'/10);    % define mv signal

Simulate the true plant (previously specified in SimOptions.Model) in open loop. Since the
reference signal is ignored in an open-loop simulation specify it as [].

sim(mpcobj,Nf,[],v,SimOptions)              % simulate the open loop system

-->Converting model to discrete time.
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Soften Constraints

For an MPC controller, each constraint has an associated dimensionless ECR value. A constraint with
a larger ECR value is allowed to be violated more than a constraint with a smaller ECR value. By
default all constraints on the manipulated variables have an ECR value of zero, making them hard.
You can specify a nonzero ECR value for a constraint to make it soft.

Relax the constraints on manipulated variables from hard to soft.

mpcobj.ManipulatedVariables.MinECR = 1;   % ECR for the MV lower bound
mpcobj.ManipulatedVariables.MaxECR = 1;   % ECR for the MV upped bound

Define an output constraint. By default all constraints on output variables (measured outputs) have
an ECR value of one, making them soft. You can reduce the ECR value for an output constraint to
make it harder, however best practice is to keep output constraints soft. Soft output constraints are
preferred because plant outputs depend on both plant states and measured disturbances; therefore, if
a large enough disturbance occurs, the plant outputs constraints can be violated regardless of the
plant state (and therefore regardless of any control action taken by the MPC controller). These
violation are especially likely when the manipulated variables have hard constraints. Such an
unavoidable violation of a hard constraint results in an infeasible MPC problem, for which no
manipulated variable can be calculated.

mpcobj.OutputVariables.Max = 1.1;    % define the (soft) output constraint

Run a new closed-loop simulation, without including the simulation option object, and therefore
without any model mismatch, unmeasured disturbance, or noise added to the manipulated variable or
measured output.
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sim(mpcobj,Nf,r,v)          % simulate the closed loop

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
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In an effort to reject the measured disturbance, achieve tracking, and prevent the output from rising
above its soft constraint of 1.1, the controller slightly violates the soft constraint on the manipulated
variable, which reaches small negative values from seconds 10 to 11. The controller violates the
constraint on the measured output more than the constraint on the manipulated variable.

Harden the constraint on the output variable and rerun the simulation.

mpcobj.OV.MaxECR = 0.001;   % the closer to zero, the harder the constraint
sim(mpcobj,Nf,r,v)          % run a new closed-loop simulation.

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
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Now the controller violates the output constraint only slightly. This output performance improvement
comes at the cost of violating the manipulated variable constraint a lot more (the manipulated
variable reaches a value of -3).

Change Built-In State Estimator Kalman Gains

At each time step, the MPC controller computes the manipulated variable by solving a constrained
quadratic optimization problem that depends on the current state of the plant. Since the plant state is
often not directly measurable, by default, the controller uses a linear Kalman filter as an observer to
estimate the state of the plant and the disturbance and noise models. Therefore, the states of the
controller are the states of this Kalman filter, which are in turn the estimates of the states of the
augmented discrete-time plant. Run a closed-loop simulation with model mismatch and unmeasured
disturbance, using the default estimator, and return the controller state structure xc.

SimOptions.OpenLoop = 'off';                    % set closed loop option
[y,t,u,xp,xc] = sim(mpcobj,Nf,r,v,SimOptions);  % run simulation

-->Simulation is in closed-loop (the "OpenLoop" property of "mpcsimopt" object is "off") and the "MVSignal" property of "mpcsimopt" object is ignored.
-->Converting model to discrete time.

xc

xc = 

  struct with fields:
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          Plant: [150x5 double]
    Disturbance: [150x1 double]
          Noise: [150x0 double]
       LastMove: [150x1 double]

Plot the plant output response as well as the plant states that have been estimated by the default
observer.

figure;                                     % create figure

subplot(2,1,1)                              % create upper subplot axis
plot(t,y)                                   % plot y versus time
title('Plant Output');                      % add title to upper plot
ylabel('y')                                 % add a label to the upper y axis
grid                                        % add grid to upper plot

subplot(2,1,2)                              % create lower subplot axis
plot(t,xc.Plant)                            % plot xc.Plant versus time
title('Estimated Plant States');            % add title to lower plot
xlabel('Time (seconds)')                    % add a label to the lower x axis
ylabel('xc')                                % add a label to the lower y axis
grid                                        % add grid to lower plot

As expected, the measured and unmeasured disturbances cause sudden changes at 10 and 20
seconds, respectively.
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You can change the gains of the Kalman filter. To do so, first, retrieve the default Kalman gains and
state-space matrices.

[L,M,A1,Cm1] = getEstimator(mpcobj);    % retrieve observer matrices

Calculate and display the poles of the default observer. They are all inside the unit circle, though a
few of them seem to be relatively close to the border. Note the six states, the first five belonging to
the plant model and the sixth belonging to the input disturbance model.

e = eig(A1-A1*M*Cm1)                    % eigenvalues of observer state matrix

e =

   0.5708 + 0.4144i
   0.5708 - 0.4144i
   0.4967 + 0.0000i
   0.9334 + 0.1831i
   0.9334 - 0.1831i
   0.8189 + 0.0000i

Design a new state estimator using pole placement. Move the faster poles a little toward the origin
and the slowest a little away from the origin. Everything else being equal, this pole placement should
result in a slightly slower observer.

poles = [.8 .75 .7 .85 .6 .81]; % specify desired positions for the new poles
L = place(A1',Cm1',poles)';     % calculate Kalman gain for time update
M = A1\L;                       % calculate Kalman gain for measurement update

Set the new matrix gains in the MPC controller object.

setEstimator(mpcobj,L,M);               % set the new estimation gains

Rerun the closed-loop simulation.

[y,t,u,xp,xc] = sim(mpcobj,Nf,r,v,SimOptions);

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Simulation is in closed-loop (the "OpenLoop" property of "mpcsimopt" object is "off") and the "MVSignal" property of "mpcsimopt" object is ignored.
-->Converting model to discrete time.

Plot the plant output response as well as the plant states estimated by the new observer.

figure;                                     % create figure

subplot(2,1,1)                              % create upper subplot axis
plot(t,y)                                   % plot y versus time
title('Plant Output');                      % add title to upper plot
ylabel('y')                                 % add a label to the upper y axis
grid                                        % add grid to upper plot

subplot(2,1,2)                              % create lower subplot axis
plot(t,xc.Plant)                            % plot xc.Plant versus time
title('Estimated Plant States');            % add title to lower plot
xlabel('Time (seconds)')                    % add a label to the lower x axis
ylabel('xc')                                % add a label to the lower y axis
grid                                        % add grid to lower plot
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As expected, the controller states are different from the ones previously plotted, and the overall
closed-loop response is somewhat slower.

Simulate Controller in Closed Loop Using mpcmove

For more general applications, you can simulate an MPC controller in a for loop using the mpcmove
function. Using this function, you can run simulations with the following features.

• Nonlinear or time-varying plants
• Constraints or weights that vary at run time
• Disturbance or reference signals that are not known before running the simulation

If your plant is continuous, you can either convert it to discrete time before simulating or you can use
a numerical integration algorithm (such as forward Euler or ode45) to simulate it in a closed loop
using mpcmove. For example, you can calculate the plant state at the next control interval using the
following methods:

• Discrete time plant x(t+1)=f(x(t),u(t)): x = f(x,u), (typically x = A*x + B*u for linear plant
models)

• Continuous time plant dx(t)/dt=f(x(t),u(t)), sample time Ts, Euler method: x = x + f(x,u)*Ts
• Continuous time plant as above, using ode45: [~,xhist] = ode45(@(t,xode) f(xode,u),

[0 Ts],x); x = xhist(end);
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In the third case, ode45 starts from the initial condition x and simulates the plant for Ts seconds,
under a constant control signal u. The last value of the resulting state signal xhist is the plant state
at the next control interval.

First, obtain the discrete-time state-space matrices of the plant, and define the simulation time and
initial states for plant and controller.

[A,B,C,D] = ssdata(plantDSS);       % discrete-time plant plant ss matrices
Tstop = 30;                         % simulation time
x = [0 0 0 0 0]';                   % initial state of the plant
xmpc = mpcstate(mpcobj);            % get handle to controller state
r = 1;                              % output reference signal

Display the initial state of the controller. The state, which is an mpcstate object, contains the
controller states only at the current time. Specifically: * xmpc.Plant is the current value of the
estimated plant states. * xmpc.Disturbance is the current value of the disturbance models states. *
xmpc.Noise is the current value of the noise models states. * xmpc.LastMove is the last value of
the manipulated variable. * xmpc.Covariance is the current value of the estimator covariance
matrix.

xmpc                                % display controller states

MPCSTATE object with fields
          Plant: [0 0 0 0 0]
    Disturbance: 0
          Noise: [1x0 double]
       LastMove: 0
     Covariance: []

Note that xmpc is a handle object, which always points to the current state of the controller. Since
mpcmove updates the internal plant state when a new control move is calculated, you do not need to
update xmpc, which always points to the current (hence updated) state.

isa(xmpc,'handle')

ans =

  logical

   1

Define workspace arrays YY and UU to store output and input signals, respectively, so that you can
plot them after the simulation.

YY=[];
UU=[];

Run the simulation loop.

for k=0:round(Tstop/Ts)-1

    % Define measured disturbance signal v(k). You can specify a more
    % complex dependence on time or previous states here, if needed.
    v = 0;
    if k*Ts>=10         % raising to 1 after 10 seconds
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        v = 1;
    end

    % Define unmeasured disturbance signal d(k). You can specify a more
    % complex dependence on time or previous states here, if needed.
    d = 0;
    if k*Ts>=20          % falling to -0.5 after 20 seconds
       d = -0.5;
    end

    % Plant equations: current output
    % If you have a more complex plant output behavior (including, for example,
    % model mismatch or nonlinearities) you can to simulate it here.
    % Note that there cannot be any direct feedthrough between u and y.
    y = C*x + D(:,2)*v + D(:,3)*d;   % calculate current output (D(:,1)=0)
    YY = [YY,y];                     % store current output

    % Note, if the plant had a non-zero operating point the output would be:
    % y = mpcobj.Model.Nominal.Y + C*(x-mpcobj.Model.Nominal.X) + D(:,2)*v + D(:,3)*d;

    % Compute the MPC action (u) and update the internal controller states.
    % Note that you do not need the update xmpc because it always points
    % to the current controller states.
    u = mpcmove(mpcobj,xmpc,y,r,v);     % xmpc,y,r,v are values at current step k
    UU = [UU,u];                        % store current input

    % Plant equations: state update
    % You can simulate a more complex plant state behavior here, if needed.
    x = A*x + B(:,1)*u + B(:,2)*v + B(:,3)*d;   % update state

    % Note, if the plant had a non-zero operating point the state update would be:
    % x = mpcobj.Model.Nominal.X + mpcobj.Model.Nominal.DX + ...
    % A*(x-mpcobj.Model.Nominal.X) + B(:,1)*(u-mpcobj.Model.Nominal.U(1)) + ...
    % B(:,2)*v + B(:,3)*d;

end

Plot the results.

figure                                      % create figure

subplot(2,1,1)                              % create upper subplot axis
plot(0:Ts:Tstop-Ts,YY)                      % plot YY versus time
ylabel('y')                                 % add a label to the upper y axis
grid                                        % add grid to upper plot
title('Output')                             % add title to upper plot

subplot(2,1,2)                              % create lower subplot axis
plot(0:Ts:Tstop-Ts,UU)                      % plot UU versus time
ylabel('u')                                 % add a label to the lower y axis
xlabel('Time (seconds)')                    % add a label to the lower x axis
grid                                        % add grid to lower plot
title('Input')                              % add title to lower plot
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To check the optimal predicted trajectories at any point during the simulation, you can use the second
output argument of mpcmove. For this example, assume you start from the current state (x and
xmpc). Also assume that, from this point until the end of the horizon, the reference set-point is 0.5
and the disturbance is 0. Simulate the controller and return the info structure.

r = 0.5;                                    % reference
v = 0;                                      % disturbance
[~,info] = mpcmove(mpcobj,xmpc,y,r,v);      % solve over prediction horizon

Display the info variable.

info

info = 

  struct with fields:

          Uopt: [11x1 double]
          Yopt: [11x1 double]
          Xopt: [11x6 double]
          Topt: [11x1 double]
         Slack: 0
    Iterations: 1
        QPCode: 'feasible'
          Cost: 0.1399
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info is a structure containing the predicted optimal sequences of manipulated variables, plant
states, and outputs over the prediction horizon. mpcmove calculated this sequence, together with the
optimal first move, by solving a quadratic optimization problem to minimize the cost function. The
plant states and outputs in info result from applying the optimal manipulated variable sequence
directly to mpcobj.Model.Plant, in an open-loop fashion. Due to the presence of noise,
unmeasured disturbances, and uncertainties, this open-loop optimization process is not equivalent to
simulating the closed loop consisting of the plant, estimator and controller using either the sim
command or mpcmove iteratively in a for loop.

Extract the predicted optimal trajectories.

topt = info.Topt;                    % time
yopt = info.Yopt;                    % predicted optimal plant model outputs
uopt = info.Uopt;                    % predicted optimal mv sequence

Since the optimal sequence values are constant across each control step, plot the trajectories using a
stairstep plot.

figure                                              % create new figure

subplot(2,1,1)                                      % create upper subplot
stairs(topt,yopt)                                   % plot yopt in a stairstep graph
title('Optimal Sequence of Predicted Outputs')      % add title to upper subplot
grid                                                % add grid to upper subplot

subplot(2,1,2)                                      % create lower subplot
stairs(topt,uopt)                                   % plot uopt in a stairstep graph
title('Optimal Sequence of Manipulated Variables')  % add title to upper subplot
grid                                                % add grid to upper subplot
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Linear Representation of MPC Controller

When the constraints are not active, the MPC controller behaves like a linear controller. Note that for
a finite-time unconstrained Linear Quadratic Regulator problem with a finite non-receding horizon,
the value function is time-dependent, which causes the optimal feedback gain to be time varying. In
contrast, in MPC the horizon has a constant length because it is always receding, resulting in a time-
invariant value function and consequently a time-invariant optimal feedback gain.

You can get the state-space form of the MPC controller.

LTI = ss(mpcobj,'rv');                  % get state-space representation

Get the state-space matrices to simulate the linearized controller.

[AL,BL,CL,DL] = ssdata(LTI);            % get state-space matrices

Initialize variables for a closed-loop simulation of both the original MPC controller without
constraints and the linearized controller.

mpcobj.MV = [];             % remove input constraints
mpcobj.OV = [];             % remove output constraints

Tstop = 5;                  % set simulation time
y = 0;                      % set nitial measured output
r = 1;                      % set output reference set-point (constant)
u = 0;                      % set previous (initial) input command
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x = [0 0 0 0 0]';           % set initial state of plant
xmpc = mpcstate(mpcobj);    % set initial state of unconstrained MPC controller
xL = zeros(size(BL,1),1);   % set initial state of linearized MPC controller

YY = [];                    % define workspace array to store plant outputs

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Simulate both controllers in a closed loop with the same plant model.

for k = 0:round(Tstop/Ts)-1

    YY = [YY,y];            % store current output for plotting purposes

    % Define measured disturbance signal v(k).
    v = 0;
    if k*Ts>=10
        v = 1;              % raising to 1 after 10 seconds
    end

    % Define unmeasured disturbance signal d(k).
    d = 0;
    if k*Ts>=20
        d = -0.5;           % falling to -0.5 after 20 seconds
    end

    % Compute the control actions of both (unconstrained) MPC and linearized MPC
    uMPC = mpcmove(mpcobj,xmpc,y,r,v);   % unconstrained MPC (also updates xmpc)
    u = CL*xL + DL*[y;r;v];              % unconstrained linearized MPC

    % Compare the two control actions
    dispStr(k+1) = {sprintf(['t=%5.2f, u=%7.4f (provided by LTI), u=%7.4f' ...
        ' (provided by MPCOBJ)'],k*Ts,u,uMPC)}; %#ok<*SAGROW>

    % Update state of unconstrained linearized MPC controller
    xL = AL*xL + BL*[y;r;v];

    % Update plant state
    x = A*x + B(:,1)*u + B(:,2)*v + B(:,3)*d;

    % Calculate plant output
    y = C*x + D(:,1)*u + D(:,2)*v + D(:,3)*d;       % D(:,1)=0

end

Display the character arrays containing the control actions.

for k=0:round(Tstop/Ts)-1
    disp(dispStr{k+1});             % display each string as k increases
end

t= 0.00, u= 5.2478 (provided by LTI), u= 5.2478 (provided by MPCOBJ)
t= 0.20, u= 3.0134 (provided by LTI), u= 3.0134 (provided by MPCOBJ)
t= 0.40, u= 0.2281 (provided by LTI), u= 0.2281 (provided by MPCOBJ)
t= 0.60, u=-0.9952 (provided by LTI), u=-0.9952 (provided by MPCOBJ)
t= 0.80, u=-0.8749 (provided by LTI), u=-0.8749 (provided by MPCOBJ)
t= 1.00, u=-0.2022 (provided by LTI), u=-0.2022 (provided by MPCOBJ)
t= 1.20, u= 0.4459 (provided by LTI), u= 0.4459 (provided by MPCOBJ)
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t= 1.40, u= 0.8489 (provided by LTI), u= 0.8489 (provided by MPCOBJ)
t= 1.60, u= 1.0192 (provided by LTI), u= 1.0192 (provided by MPCOBJ)
t= 1.80, u= 1.0511 (provided by LTI), u= 1.0511 (provided by MPCOBJ)
t= 2.00, u= 1.0304 (provided by LTI), u= 1.0304 (provided by MPCOBJ)
t= 2.20, u= 1.0053 (provided by LTI), u= 1.0053 (provided by MPCOBJ)
t= 2.40, u= 0.9920 (provided by LTI), u= 0.9920 (provided by MPCOBJ)
t= 2.60, u= 0.9896 (provided by LTI), u= 0.9896 (provided by MPCOBJ)
t= 2.80, u= 0.9925 (provided by LTI), u= 0.9925 (provided by MPCOBJ)
t= 3.00, u= 0.9964 (provided by LTI), u= 0.9964 (provided by MPCOBJ)
t= 3.20, u= 0.9990 (provided by LTI), u= 0.9990 (provided by MPCOBJ)
t= 3.40, u= 1.0002 (provided by LTI), u= 1.0002 (provided by MPCOBJ)
t= 3.60, u= 1.0004 (provided by LTI), u= 1.0004 (provided by MPCOBJ)
t= 3.80, u= 1.0003 (provided by LTI), u= 1.0003 (provided by MPCOBJ)
t= 4.00, u= 1.0001 (provided by LTI), u= 1.0001 (provided by MPCOBJ)
t= 4.20, u= 1.0000 (provided by LTI), u= 1.0000 (provided by MPCOBJ)
t= 4.40, u= 0.9999 (provided by LTI), u= 0.9999 (provided by MPCOBJ)
t= 4.60, u= 1.0000 (provided by LTI), u= 1.0000 (provided by MPCOBJ)
t= 4.80, u= 1.0000 (provided by LTI), u= 1.0000 (provided by MPCOBJ)

Plot the results.

figure                                              % create figure
plot(0:Ts:Tstop-Ts,YY)                              % plot plant outputs
grid                                                % add grid
title('Unconstrained MPC control: Plant output')    % add title
xlabel('Time (seconds)')                            % add label to x axis
ylabel('y')                                         % add label to y axis
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Running a closed-loop simulation in which all controller constraints are turned off is easier using sim,
as you just need to specify 'off' in the Constraint field of the related mpcsimopt simulation
option object.

SimOptions = mpcsimopt;                     % create simulation options object
SimOptions.Constraints = 'off';             % remove all MPC constraints
SimOptions.UnmeasuredDisturbance = d;       % unmeasured input disturbance
sim(mpcobj,Nf,r,v,SimOptions);              % run closed-loop simulation
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Simulate Using Simulink

You can also simulate your MPC controller in Simulink.

To compare results, recreate the MPC object with the constraints you use in the Design MPC
Controller section, and the default estimator.

mpcobj = mpc(plantDSS,Ts,10,3);
mpcobj.MV = struct('Min',0,'Max',1,'RateMin',-10,'RateMax',10);
mpcobj.Model.Disturbance = tf(sqrt(1000),[1 0]);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Obtain the state-space matrices of the continuous-time plant.

[A,B,C,D] = ssdata(plantCSS);       % get state-space realization

Open the mpc_miso Simulink model for closed-loop simulation. The plant model is implemented with
a continuous state-space block.

open_system('mpc_miso')
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The plant input signals u(t), v(t), and d(t) represent the manipulated variable, measured input
disturbance, and unmeasured input disturbance, respectively, while y(t) is the measured output. The
block parameters are the matrices forming the state-space realization of the continuous-time plant,
and the initial conditions for the five states. The MPC controller is implemented with an MPC
Controller block, which has the workspace MPC object mpcobj as a parameter, the manipulated
variable as the output, and the measured plant output, reference signal, and measured plant input
disturbance, respectively, as inputs. The four Scope blocks plot the five loop signals, which are also
saved (except for the reference signal) by four To-Workspace blocks.

Simulate the closed loop system using the simulink sim command. Note that this command (which
simulates a Simulink model, and is equivalent to clicking the "Run" button in the model) is different
from the sim command provided by the MPC toolbox (which instead simulates an MPC controller in a
loop with an LTI plant).

sim('mpc_miso')

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

To show the simulation results, open the four Scope windows
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open_system('mpc_miso/MV')
open_system('mpc_miso/Outputs//References')
open_system('mpc_miso/MD')
open_system('mpc_miso/UD')
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The plots in the Scope windows are equivalent to the ones in the Simulate Closed-Loop Response
Using the sim Command and Simulate Closed-Loop Response with Model Mismatch sections, with
minor differences due to the fact that in Simulate Closed-Loop Response Using the sim Command the
unmeasured disturbance signal is zero, and that in Simulate Closed-Loop Response with Model
Mismatch you add noise to the plant input and output. Also note that, while the MPC sim command
internally discretizes any continuous plant model using the ZOH method, Simulink typically uses an
integration algorithm (in this example ode45) to simulate the closed loop when a continuous-time
block is present.
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Run Simulation with Sinusoidal Output Noise.

Assume output measurements are affected by a sinusoidal disturbance (a single tone sensor noise) of
frequency 0.1 Hz.

omega = 2*pi/10;                            % disturbance radial frequency

Open the mpc_misonoise Simulink model, which is similar to the mpc_miso model except for the
sinusoidal disturbance added to the measured output. Also, the simulation time is longer and the
unmeasured disturbance begins before the measured disturbance.

open_system('mpc_misonoise')                % open new Simulink model

Since this noise is expected, you can specify a noise model to help the state estimator ignore it. Doing
so improves the disturbance rejection capabilities of the controller.

mpcobj.Model.Noise = 0.5*tf(omega^2,[1 0 omega^2]); % measurement noise model

Revise the MPC design by specifying a disturbance model on the unmeasured input as a white
Gaussian noise with zero mean and variance 0.1.

setindist(mpcobj,tf(0.1));                          % static gain
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In this case, you cannot have integrators as disturbance model on both the unmeasured input and the
output, because this violates state observability. Therefore when you specify a static gain for the input
disturbance model, an output disturbance model consisting in a discretized integrator is
automatically added to the controller. This output disturbance model helps the controller to reject
step-like and slowly varying disturbances at the output.

getoutdist(mpcobj)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->A feedthrough channel in NoiseModel was inserted to prevent problems with estimator design.

ans =
 
  A = 
       x1
   x1   1
 
  B = 
        u1
   x1  0.2
 
  C = 
        x1
   MO1   1
 
  D = 
        u1
   MO1   0
 
Sample time: 0.2 seconds
Discrete-time state-space model.

Large measurement noise can decrease the accuracy of the state estimates. To make the controller
less aggressive, and decrease its noise sensitivity, decrease the weight on the output variable
tracking.

mpcobj.weights = struct('MV',0,'MVRate',0.1,'OV',0.005);    % new weights

To give the Kalman filter more time to successfully estimate the states, increase the prediction
horizon to 40.

mpcobj.predictionhorizon = 40;                  % new prediction horizon

Run the simulation for 145 seconds.

sim('mpc_misonoise',145)    % the second argument is the simulation duration

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->A feedthrough channel in NoiseModel was inserted to prevent problems with estimator design.

To show the simulation results, open the four Scope windows

open_system('mpc_misonoise/MV')
open_system('mpc_misonoise/Outputs//References//Noise')
open_system('mpc_misonoise/MD')
open_system('mpc_misonoise/UD')
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The Kalman filter successfully learns to ignore the measurement noise after 50 seconds. The
unmeasured and measured disturbances get rejected in a 10 to 20 second timespan. As expected, the
manipulated variable stays in the interval between 0 and 1.
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bdclose all    % close all open Simulink models without saving any change
close all      % close all open figures

See Also
Objects
mpc

Functions
sim

Apps
MPC Designer

Blocks
MPC Controller

More About
• “Model Predictive Control of a Single-Input-Single-Output Plant” on page 3-50
• “Model Predictive Control of a Multi-Input Multi-Output Nonlinear Plant” on page 3-91
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Model Predictive Control of a Multi-Input Multi-Output
Nonlinear Plant

This example shows how to design a model predictive controller for a multi-input multi-output
nonlinear plant defined in Simulink® and simulate the closed loop. The plant has three manipulated
variables and two measured outputs.

Linearize the Nonlinear Plant

To run this example, Simulink® and Simulink Control Design™ are required.

% Check that both Simulink and Simulink Control Design are installed,
% otherwise display a message and return
if ~mpcchecktoolboxinstalled('simulink')
    disp('Simulink(R) is required to run this example.')
    return
end
if ~mpcchecktoolboxinstalled('slcontrol')
    disp('Simulink Control Design(R) is required to run this example.')
    return
end

The nonlinear plant is implemented in the Simulink model mpc_nonlinmodel. Notice the
nonlinearity 0.2*u(1)^3 from the first input to the first output.

open('mpc_nonlinmodel')

Linearize the plant at the default operating conditions (the initial states of the transfer function
blocks are all zero) using the linearize command from the Simulink Control Design Toolbox.

plant = linearize('mpc_nonlinmodel');

Assign names to I/O variables.

plant.InputName = {'Mass Flow';'Heat Flow';'Pressure'};
plant.OutputName = {'Temperature';'Level'};
plant.InputUnit = {'kg/s' 'J/s' 'Pa'};
plant.OutputUnit = {'K' 'm'};
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Note that since you have not defined any measured or unmeasured disturbance, or any an
unmeasured output, when an MPC controller is created based on plant, by default all plant inputs
are assumed to be manipulated variables and all plant outputs are assumed to be measured outputs.

Design the MPC Controller

Create the controller object with sampling period, prediction and control horizons of 0.2 sec, 5 steps,
and 2 moves, respectively;

mpcobj = mpc(plant,0.2,5,2);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Specify hard constraints on the manipulated variable.

mpcobj.MV = struct('Min',{-3;-2;-2},'Max',{3;2;2},'RateMin',{-1000;-1000;-1000});

Define weights on manipulated variables and output signals.

mpcobj.Weights = struct('MV',[0 0 0],'MVRate',[.1 .1 .1],'OV',[1 1]);

Display the MPC object to review its properties.

mpcobj

 
MPC object (created on 26-Feb-2022 20:12:24):
---------------------------------------------
Sampling time:      0.2 (seconds)
Prediction Horizon: 5
Control Horizon:    2

Plant Model:        
                                      --------------
      3  manipulated variable(s)   -->|  5 states  |
                                      |            |-->  2 measured output(s)
      0  measured disturbance(s)   -->|  3 inputs  |
                                      |            |-->  0 unmeasured output(s)
      0  unmeasured disturbance(s) -->|  2 outputs |
                                      --------------
Disturbance and Noise Models:
        Output disturbance model: default (type "getoutdist(mpcobj)" for details)
         Measurement noise model: default (unity gain after scaling)

Weights:
        ManipulatedVariables: [0 0 0]
    ManipulatedVariablesRate: [0.1000 0.1000 0.1000]
             OutputVariables: [1 1]
                         ECR: 100000

State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
 -3 <= Mass Flow (kg/s) <= 3, -1000 <= Mass Flow/rate (kg/s) <= Inf, Temperature (K) is unconstrained
  -2 <= Heat Flow (J/s) <= 2,  -1000 <= Heat Flow/rate (J/s) <= Inf,       Level (m) is unconstrained
    -2 <= Pressure (Pa) <= 2,    -1000 <= Pressure/rate (Pa) <= Inf                                  
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Simulate the Closed Loop Using Simulink

Open the pre-existing Simulink model for the closed-loop simulation. The plant model is identical to
the one used for linearization, while the MPC controller is implemented with an MPC controller block,
which has the workspace MPC object mpcobj as parameter. The reference for the first output is a
step signal rising from zero to one for t=0, as soon as the simulation starts. The reference for the
second output

mdl1 = 'mpc_nonlinear';
open_system(mdl1)
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Run the closed loop simulation.

sim(mdl1)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
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Despite the presence of the nonlinearity, both outputs track their references well after a few seconds,
while, as expected, the manipulated variables stay within the preset hard constraints.

Modify MPC Design to Track Ramp Signals

In order to both track a ramp while compensating for the nonlinearity, define a disturbance model on
both outputs as a triple integrator (without the nonlinearity a double integrator would suffice).

outdistmodel = tf({1 0;0 1},{[1 0 0 0],1;1,[1 0 0 0]});
setoutdist(mpcobj,'model',outdistmodel);

Open the pre-existing Simulink model for the closed-loop simulation. It is identical to the previous
closed loop model, except for the fact that the reference for the first plant output is no longer a step
but a ramp signal that rises with slope of 0.2 after 3 seconds.
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mdl2 = 'mpc_nonlinear_setoutdist';
open_system(mdl2)
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Run the closed loop simulation for 12 seconds.

sim(mdl2,12)

-->Converting model to discrete time.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
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Simulate without Constraints

When the constraints are not active, the MPC controller behaves like a linear controller. Simulate two
versions of an unconstrained MPC controller in closed loop to illustrate this fact.

First, remove the constraints from mcpobj.

mpcobj.MV = [];

Then reset the output disturbance model to default, (this is only done to get a simpler version of a
linear MPC controller in the next step).

setoutdist(mpcobj,'integrators');

Convert the unconstrained MPC controller to a linear time invariant (LTI) state space dynamical
system, having the vector [ym;r] as input, where ym is the vector of measured output signals (at a
given step), and r is the vector of output references (at the same given step).

LTI = ss(mpcobj,'r');         % use reference as additional input signal

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Open the pre-existing Simulink model for the closed-loop simulation. The "references" block contains
two step signals (acting after 4 and 0 seconds, respectively) that are used as a reference. The "MPC
control loop" block is equivalent to the first closed loop, except for the fact that the reference signals
are supplied to it as input. The "Linear control loop" block is equivalent to the "MPC control loop"
block except for the fact that the controller is an LTI block having the workspace ss object LTI as
parameter.

refs = [1;1];                  % set values for step signal references
mdl3 = 'mpc_nonlinear_ss';
open_system(mdl3)
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Run the closed loop simulation for 12 seconds.

sim(mdl3)
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The inputs and outputs signals look identical for both loops. Also note that the manipulated variable
are no longer bounded by the previous constraints.

Compare Simulation Results

fprintf('Compare output trajectories: ||ympc-ylin|| = %g\n',norm(ympc-ylin));
disp('The MPC controller and the linear controller produce the same closed-loop trajectories.');

Compare output trajectories: ||ympc-ylin|| = 1.14502e-14
The MPC controller and the linear controller produce the same closed-loop trajectories.

As expected, there is only a negligible difference due to numerical errors.

Close all open Simulink models without saving any change.
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bdclose all

See Also
Objects
mpc

Apps
MPC Designer

Blocks
MPC Controller

More About
• “Model Predictive Control of a Single-Input-Single-Output Plant” on page 3-50
• “Model Predictive Control of Multi-Input Single-Output Plant” on page 3-54
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